
Refinement and Generalization of Reliability Models Based on Component
States

Natasha Jarusa, Sahra Sedigh Sarvestania,∗, Ali R. Hursona

aDepartment of Electrical and Computer Engineering, Missouri University of Science and Technology, 301 W. 16th
St., Rolla, MO, 65409 USA

Abstract

Complex system design often proceeds in an iterative fashion, starting from a high-level model and adding
detail as the design matures. This process can be assisted by metamodeling techniques that automate some
model manipulations and check for or eliminate modeling mistakes. Our work focuses on metamodeling
reliability models: we describe generalization and refinement operations for these models. Generalization
relaxes constraints that may be infeasible or costly to evaluate; refinement adds further detail to produce a
model that more closely describes the desired system. We define these operations in terms of operations on
system constraints. To illustrate the proposed method, we relate these constraints to a common Markov
chain-based reliability modeling formalism.

Keywords: Markov Imbedded Structure Models, Refinement, Generalization

1. Introduction

Designers of critical complex systems—such as autonomous vehicles, power grids, or water distribution
networks—must ensure their systems can dependably meet performance requirements. Dependability
encompasses a variety of system metrics that describe the ability of a system to continue to provide service
as its components degrade. Among the most common of these metrics is reliability : the probability that a
system remains functional up to time t. Reliability takes a binary view of system function: components, and
the system, are either functional or failed. Reliability models based on component states compute a system’s
reliability as a function of the reliabilities of its components. This function is determined by the structure of
the system—how its components are connected. For example, a power grid consisting of two transmission
lines in parallel is more reliable than the system with the same lines connected in series.

Complex systems are often designed iteratively. Requirements are gathered and an initial design is
prepared, modeled, and analyzed. Based on the results, the design is modified to better fit the requirements
(or the requirements are modified so the design can better fit them) and the process repeats. Initial designs
and models may be quite general; but they become more detailed as the design progresses. As the design
process can have many iterations, metamodeling approaches, which model operations applied to models, are
often used to reduce the labor involved, eliminate certain modeling mistakes, and even to help explore the
design space.

When modifying a model, we typically want to either add more detail—a new component, a stronger
constraint on how that component behaves—or we want to remove a constraint that is unrealistic or would
render the design infeasible. The first action we call refinement and the second generalization. Refinement
can be used to fill out detail in a high-level model that meets design requirements; generalization can be
used to “back out” of a design choice that isn’t working. Both can be used together to explore the design

∗Corresponding author
Email addresses: jarus@mst.edu (Natasha Jarus), sedighs@mst.edu (Sahra Sedigh Sarvestani), hurson@mst.edu (Ali R.

Hurson)

Preprint submitted to Elsevier TBD

space—refinement asks “what is the smallest detail that could be added to this model?”; generalization asks
“what happens if this detail is removed?” It is our goal to make these actions explicit and exact, enabling
further analysis and software automation.

In this work, we propose a method for generalization and refinement of Markov Imbeddable Structure
(MIS) reliability models where system-level states are identified based on component-level states. The initial
state is one where every component is functional; the terminal state is one where enough components have
failed to cause system failure, and intermediate states correspond to the system remaining functional despite
some the failure of some of its components. These models describe a system composed of n components
as a Markov chain, encoding each component’s reliability and the effect of its failure on other components.
The reliability of the system is then the probability that the system remains functional after taking n steps
through the Markov chain. Our work focuses on MIS models where the states of the Markov chain are defined
by component status (e.g., “component 3 failed” or “only component 2 functional”) and where the component
status described by a state remains the same regardless of which component’s failure is being considered.

When formalizing generalization and refinement, we should consider system properties that are preserved
by these operations. Roughly speaking, if the model mr is a refinement of a model mg, the constraints
imposed on the system by mr should imply the constraints imposed by mg. For example, if mr requires a
component c to have reliability ≥ 0.9, mg can require that c have reliability ≥ 0.7—this constraint is strictly
weaker than the constraint of mr. However, mg could not require c to have reliability ≥ 0.99. In other words,
a system meeting the requirements of mr would provide equal or better reliability than a system meeting
mg’s requirements alone. If mr refines mg, then mg generalizes mr, so we can use the same implication
relationship to describe both refinement and generalization. We formally abstract system properties and
implication to analyze the soundness of our definitions of generalization and refinement.

Another advantage of describing refinement and generalization in this fashion is that it can be used for
model-to-model transformations as shown in our previous work [1]. Provided another formalism represents
some of the same system properties, we can relate these MIS models to this formalism in a way that lets us
soundly convert between the two. Thus, the effort required to develop this formalism enables more than the
single application this work discusses.

The rest of this paper is as follows. Section 2 provides a summary of the theory behind our approach.
System constraints, generalization, and refinement are defined in Section 3. These operations are connected
to MIS models in Section 4. In Section 5, we extend this analysis to MIS models containing superstates and
draw a connection to non-deterministic choice. Finally, related work is surveyed in Section 6 and Section 7
presents our conclusions.

2. Background

The central theory that underlies the work in this paper has been articulated in our previous work [1].
Here we recap the results in terms of the goals of this paper.

Our goal is to relate two domains—a domain of MIS models and a domain of system properties—so
that if a certain set of properties describe a given system, the model generated from those properties also
describes the system. Likewise, if a model describes a system, the properties generated from that model also
describe the system. We use this relationship to define generalization and refinement on MIS models based
on generalization and refinement of properties.

For our approach, the domains must both be complete lattices L ≜ (L,⊑,
⊔
,
d
,⊥,⊤). Recall that ⊑ is

a partial order relation; for any subset L′ ⊆ L,
⊔

L′ is the least upper bound (join) and
d

L′ the greatest
lower bound (meet) of L′; and ⊥ and ⊤ are the least and greatest elements of the lattice. For L′ = {l1, l2},
we write

d
L′ as l1 ⊓ l2 and

⊔
L′ as l1 ⊔ l2.

Suppose we have a complete system properties lattice Prop ≜ (Prop,⇒,
∨
,
∧
,⊥P ,⊤P) (see Sec. 3)

and a complete MIS model lattice MIS ≜ (MIS,⊑,
⊔
,
d
,⊥M ,⊤M) (see Sec. 4). We order both domains

by specificity. Intuitively, properties p1 are more specific than properties p2 (i.e., p1 ⊑ p2) if p1 provides
additional information about the system that p2 does not. Likewise with models: if m1 ⊑ m2, m1 may offer
more detail about the system; for example, m1 may divide a component in m2 into several components with

2

a more complex interrelationship. The meet of two properties p1 ⊓ p2 is their logical conjunction; the join
p1 ⊔ p2 is their disjunction. We will discuss both of these domains in more detail later in the paper.

We use a Galois connection to soundly relate elements of these two domains. A Galois connection between
complete lattices is a pair of functions α and γ with properties similar to, but less strict than, those of an
order isomorphism. Informally, Galois connections allow one of the lattices to have “more detail” than the
other; they are often used in cases where one lattice is an abstraction of the other.

Definition 2.1. A Galois connection (P, α, γ,M) between complete lattices P and M is a pair of functions
α : P → M and γ : M → P such that

(i) ∀p ∈ P, p ⊑ (γ ◦ α)(p) and

(ii) ∀m ∈ M, (α ◦ γ)(m) ⊑ m.

α is called the abstraction function (or abstraction operator); γ is called the concretization function
(operator).

Given a Galois connection (Prop, α, γ,MIS), what do properties 2.1.(i) and 2.1.(ii) mean in terms
of system properties and MIS models? Property 2.1.(i) states that for every collection of properties p,
p ⇒ (γ ◦ α)(p): if we abstract a model from p, then concretize properties from that model; the result is at
worst more general than the properties with which we began. Likewise, property 2.1.(ii) states that for every
MIS model m, (α ◦ γ)(m) ⊑ m. Thus, concretizing properties from an MIS model, then abstracting a model
from those properties, produces at worst a model more specific than the initial model. (It is often the case
that the ⊑ in 2.1.(ii) is equality.)

What remains is to relate our domains and the Galois connection between them to a notion of soundness.
Soundness is a relative property; whether a model or a collection of properties is sound or not depends on the
system being modeled. Let S ∈ Sys denote the system we are modeling. We encode soundness by a relation:

Definition 2.2. A relation RL : Sys → L between systems and elements of a lattice L is a soundness relation
if

(i) if S RL l1 and l1 ⊑ l2, then S RL l2 and

(ii) if L′ ⊆ L and ∀l ∈ L′,S RLl, then S RL

d
L′.

We suppose that we have a soundness relation RP : Sys → Prop such that S RP p if and only if the
properties in p describe S. Every generalization of a correct collection of properties is sound by property 2.2.(i).
Not every refinement of a collection of properties is necessarily sound—otherwise, every property would be
sound for every system. However, if we know several sound properties, property 2.2.(ii) states that they can
be refined to a single sound property that implies all known sound properties.

Given the soundness relation RP, we can induce a soundness relation RM : Sys → MIS by S RM m ⇐⇒
S RP γ(m). Therefore, if properties pr soundly refine pg, then α(pr) soundly refines α(pg). In short, we need
only consider the soundness of refinements in Prop; the soundness of our MIS models follows.

3. Properties

Before we describe refinement and generalization of MIS models, we formalize the constraints they place
on system design. The MIS models we consider in this work place three broad constraints on a system: what
components are in the system, how reliable each component is, and which components depend on others
to remain functional. The properties domain Prop defines these as a lattice, allowing us to relate these
properties to MIS models.

As we will need some way to identify components, let Comps ≜ {c1, c2, . . . } be the set of all possible
component names.

Each element p ∈ Prop is a triplet p = (C,R,D) where

• C ⊆ Comps is the finite set of names of components in the system (e.g., {c1, c2, c3});

3

• R : C → [0, 1] is a function that specifies a lower bound for the reliability of each component: if the
reliability of c is p, then R(c) ≤ p; and

• D ⊆ Deps is the finite set of component dependencies, as described in the next section.

For example, a system consisting of two 90% reliable power lines in parallel where the failure of one causes the
other to become overloaded and thus fail as well would be described by the properties (C = {c1, c2},R(c1) =
R(c2) = 0.9,D = {⟨c1 ⇝ c2,S⟩, ⟨c2 ⇝ c1,S⟩}).

3.1. Dependencies
Component dependencies (elements of Deps) are represented by the relation ⟨_ ⇝ _⟩ : P(C) →

P(C ∪ {S}).1 The statement ⟨· · ·1 ⇝ · · ·2⟩ means “the failure of the components in the set · · ·1 immediately
leads to the failure of the components in · · ·2”. Should S appear in · · ·2, the system also fails as a result
of the components of · · ·1 failing. The components on the left side (· · ·1) are referred to as causes and the
components on the right (· · ·2) as effects.

These dependencies correspond to state transitions. Suppose we have a system with components
C = {c1, c2, c3}. We can represent the state of the components as three-bit strings: 111 corresponds to the
system state where all components are functional, 101 corresponds to the state where c2 has failed, etc. A
dependency ⟨c1 ⇝ ∅⟩ corresponds to a transition from 111 to 011 when c1 fails—the failure of c1 does
not influence the functionality of other components in the system. Likewise, a dependency ⟨c1, c2 ⇝ c3,S⟩
corresponds to transitions from 101 to 000 when c1 fails and from 011 to 000 when c2 fails; furthermore,
in state 000 the system is considered failed. Sec. 4 formalizes this correspondence.

As there are a number of ways to write dependencies, we place some constraints on them to ensure the
constraints on the system are consistent with how components fail and fully cover all cases of system behavior.
These constraints are split into equivalences and well-formedness (WF) properties.

3.1.1. Equivalences
The first equivalence rule states that if a component appears on both sides of ⇝, we can remove it from

the right side. The failure of any component trivially causes that component to fail; this rule states that we
need not write this fact explicitly:2

⟨c · · ·1 ⇝ c · · ·2⟩ ≡ ⟨c · · ·1 ⇝ · · ·2⟩. (Tautology)

The remaining two equivalences are between sets of dependencies, rather than between two individual
dependencies. If we have two dependencies with the same cause but different effects, we can produce one
dependency that represents both by taking the union of their effects:{

⟨· · ·1 ⇝ · · ·2⟩
⟨· · ·1 ⇝ · · ·3⟩

}
≡ {⟨· · ·1 ⇝ · · ·2 · · ·3⟩} . (Union)

Finally, a dependency with no causes cannot occur:

{⟨∅⇝ · · ·⟩} ≡ ∅. (Inaction)

3.1.2. Well-formedness Properties
The WF properties describe a system-level view of dependencies: what dependencies need to be present

in D to make a consistent set of system constraints. First, every component must have a dependency where
it is the sole cause of failure (although the effect may be the empty set). These correspond to transitions
from the initial 1 · · · 1 state:

∀c ∈ C,∃⟨c⇝ · · ·⟩ ∈ D. (Initiality)

1P(S) denotes the set of subsets (“powerset”) of the set S.
2A note on notation: c · · ·1 refers to a set containing the component c and the components of the set · · ·1.

4

In addition, at least one sequence of failures must lead to the system failing (otherwise, the system’s
reliability would be 1 and there would be nothing to model):

∃⟨· · ·1 ⇝ S · · ·2⟩ ∈ D. (Termination)

Finally, components cannot recover as a result of the failure of other components. Thus, if components
· · ·1 cause components · · ·2 to fail, any other dependency where · · ·1 have failed must also have · · ·2 failed.

∀⟨· · ·1 ⇝ · · ·2⟩ ∈ D,

∀⟨· · ·1 · · ·3 ⇝ · · ·4⟩ ∈ D,

· · ·2 ⊆ · · ·3 ∪ · · ·4 .
(Monotonicity)

For instance, if we have ⟨c1 ⇝ c2⟩, Monotonicity would permit the dependencies ⟨c1, c3 ⇝ c2⟩ and
⟨c1, c2 ⇝ c3⟩ but forbid ⟨c1, c3 ⇝ ∅⟩, as c2 must always fail when c1 fails.

3.1.3. Examples
Before addressing generalization and refinement of properties, we demonstrate a few examples of how

dependencies are used to specify system behavior. First, consider the dependencies in the earlier parallel-
component example: D = {⟨c1 ⇝ c2,S⟩, ⟨c2 ⇝ c1,S⟩}. In this system, the failure of component c1 leads
to the failure of c2 and system failure, and vice versa for c2. This system has two states, 11 and 00 ; the
failure of either component causes a transition from the first to the second.

By contrast, a parallel-component system where the two components are independent would be specified
by D = {⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c1, c2 ⇝ S⟩}. This system has all four possible states and all valid transitions
between states.

A system with two components in series produces a more interesting “failed” state. These components are
independent, as one failing does not cause the other to fail, but both need to be functional for the system
to function: D = {⟨c1 ⇝ S⟩, ⟨c2 ⇝ S⟩}.This system also has two states: the initial state 11 and the failed
superstate 01 10 . Once the system has failed, we are no longer interested in its behavior; thus, for this
system, we consider 00 unreachable.

3.2. Generalization
Now that we have described the elements of Prop, we can describe how to generalize them. The goal of

generalizing an element of Prop is to produce an element of Prop that relaxes the constraints of the first
element but does not contradict it. Understanding how constraints can be generalized allows us to order
Prop by generalization.

3.2.1. One-step generalizations of dependencies
For a given reliability model, one way to generalize dependencies is to lower the constraint on a component’s

reliability: a more reliable component can always be substituted for a less reliable one. We can relax the
reliability of a component, c, to a lower constraint r < R(c) by

relax_rel(C,R,D)[_,_] : C → [0, 1] → Prop

relax_rel(C,R,D)[c, r] ≜ (C,R′,D) (1)

where

R′(c′) ≜

{
r if c = c′

R(c′) otherwise.
(1a)

The other means of generalizing system constraints is to generalize component dependencies. We begin
by considering the smallest actions we can take that generalize system dependencies while maintaining the
WF properties. There are two possible operations: merging two components and adding a new dependency
⟨· · ·⇝ c⟩ among existing components. Both of these operations take one element of Prop and infer another.

5

Two distinct components c1 and c2 can be merged into a single component cm (where the name cm does
not already appear in C \ {c1, c2}) by replacing every instance of c1 and c2 with cm:

merge(C,R,D)[_,_ → _] : C → C → Comps → Prop

merge(C,R,D)[c1, c2 → cm] ≜ (C′,R′,D′) (2)

where

C′ ≜ {cm} ∪C \ {c1, c2} (2a)

R′(c) ≜

{
min(R(c1),R(c2)) if c = cm,

R(c) otherwise.
(2b)

D′ ≜ {⟨m(c)⇝ m(e)⟩ | ⟨c⇝ e⟩ ∈ D} (2c)

m(c) ≜

{
{cm} ∪ c \ {c1, c2} if c1 ∈ c ∨ c2 ∈ c,

c otherwise.
(2d)

When defining a generalization, we should ensure that it only relaxes constraints. Thus, when choosing the
reliability bound R′(cm) of the merged component, we must pick the least restrictive choice min(R(c1),R(c2)).
Effectively, this choice performs two generalizations: first, we relax the tighter of the reliability bounds of c1
and c2 by setting R(c1) = R(c2), then we merge c1 and c2 into one component.

The dependencies that merge generates are the result of applying the following rules until a fixed point is
reached (i.e., no more dependencies match the left-hand side):

⟨c1 · · ·1 ⇝ · · ·2⟩ 7→ ⟨cm · · ·1 ⇝ · · ·2⟩
⟨c2 · · ·1 ⇝ · · ·2⟩ 7→ ⟨cm · · ·1 ⇝ · · ·2⟩
⟨· · ·1 ⇝ c1 · · ·2⟩ 7→ ⟨· · ·1 ⇝ cm · · ·2⟩
⟨· · ·1 ⇝ c2 · · ·2⟩ 7→ ⟨· · ·1 ⇝ cm · · ·2⟩

The other possible generalization is adding a dependency among existing components. This may seem
counterintuitive; however, it is a stronger claim to say that a component is independent of another—the fewer
dependencies a system has, the more reliable it is. Adding a dependency from a nonempty set of components
c to a component e /∈ c means that whenever the components in c cause a failure, e is amongst the effects.
As all the components in c and e are in C already, we need only modify the dependencies:

add_dep(C,R,D)[_⇝ _] : P(C) → C → Prop

add_dep(C,R,D)[c⇝ e] ≜ (C,R,D′) (3)

where

D′ ≜ {a(⟨c′ ⇝ e′⟩) | ⟨c′ ⇝ e′⟩ ∈ D} (3a)
∪ {⟨c⇝ u ∪ {e}⟩}

a(⟨c′ ⇝ e′⟩) ≜

{
⟨c′ \ {e}⇝ e′ ∪ {e}⟩ if c ⊆ c′,

⟨c′ ⇝ e′⟩ otherwise.
(3b)

u ≜
⋃

{e′ | ⟨c′ ⇝ e′⟩ ∈ D where c′ ⊆ c} (3c)

Again, we can view the dependencies in D′ after adding the dependency ⟨· · ·1 ⇝ e⟩ as the result of
rewriting matching dependencies in D:

⟨e · · ·1 · · ·2 ⇝ · · ·3⟩ 7→ ⟨· · ·1 · · ·2 ⇝ e · · ·3⟩
⟨· · ·1 · · ·2 ⇝ · · ·3⟩ 7→ ⟨· · ·1 · · ·2 ⇝ e · · ·3⟩

6

and adding the dependency ⟨· · ·1 ⇝ e · · ·2⟩ where the components · · ·2 are the effects of failures of components
in · · ·1 as required by Monotonicity.

For an example of the effect of generalization operations on a system, consider a system with three
independent components:

p = (C = {c1, c2, c3},R(_) = 0.9,D = {
⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩,
⟨c1, c2, c3 ⇝ S⟩

})

Introducing a dependency ⟨c1, c2 ⇝ c3⟩ results in the following system:

p′ = add_depp[c1, c2 ⇝ c3]

= (C′ = {c1, c2, c3},R′(_) = 0.9,D′ = {
⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩,
⟨c1, c2 ⇝ c3⟩†,
⟨c1, c2 ⇝ c3,S⟩‡

}
≡ ⟨c1, c2 ⇝ c3,S⟩

})

Of note: the dependency marked † is the new dependency added by add_dep and the dependency marked ‡

is the result of the first substitution rule in (3b). Both rules reduce to one via the Union property.
Continuing the example, merging c2 and c3 into c4 gives us the system

p′′ = mergep′ [c2, c3 → c4]

= (C′′ = {c1, c4},R′′(_) = 0.9,D′′ = {
⟨c1 ⇝ ∅⟩,
⟨c4 ⇝ ∅⟩,
⟨c1, c4 ⇝ c4,S⟩ ≡ ⟨c1, c4 ⇝ S⟩

})

where both components are independent and the failure of both leads to system failure.

3.2.2. Multi-step generalization of dependencies
The example of the previous section illustrates the process by which successive generalization steps

are applied to system properties. To describe this more formally, let G be the set of all generalization
operations and G∗ be the set of finite sequences of elements of G. We define the act of applying a sequence
of generalizations to an element of properties, J_K(_) : G∗ → Prop → Prop, by

JgK(p) ≜

{
p if g = ()

JgsK(g′p) if g = (g′, gs).
(4)

With the ability to apply a sequence of generalizations, we now turn to the task of ordering elements of
Prop. First, we prove some monotonicity properties of any q ∈ Prop generalized from some p ∈ Prop.

Theorem 3.1. For all p = (C,R,D) ∈ Prop and for all g ∈ G where (C′,R′,D′) = JgK(p),

(i) |C′| ≤ |C|,

(ii) ∀c ∈ C ∩C′,R′(c) ≤ R(c), and

(iii) if C = C′, ∀⟨c⇝ e′⟩ ∈ D′, if ⟨c⇝ e⟩ ∈ D, e ⊆ e′.

7

Proof. Proceed by case analysis on g.
Case g = relax_rel[c, r]:

(i) C′ = C. (ii) For c′ ∈ C,

{
R′(c′) < R(c′) if c = c′

R′(c′) = R(c′) otherwise
. (iii) D′ = D.

Case g = merge[c1, c2 → cm]:

(i) |C′| = |C| − 1 ≤ |C|. (ii) For c ∈ C,

{
R′(c) ≤ R(c) if c = cm

R′(c) = R(c) otherwise
. (iii) C ̸= C′.

Case g = add_dep[c⇝ e]:

(i) C′ = C. (ii) R′ = R. (iii) Consider ⟨c′′ ⇝ e′′⟩ ∈ D′. If c = c′′, then (by Union) ⟨c′′ ⇝ e′′⟩ ≡

a(⟨c′′ ⇝ e1⟩)

a(⟨c′′ ∪ {e}⇝ e2⟩)
⟨c′′ ⇝ u ∪ {e}⟩

so e′′ = e1 ∪ e2 ∪ u ∪ {e}, where u is defined as in Equation 3c. If ⟨c′′ ⇝ e1⟩ ∈ D, then e1 ⊆ e′′. Otherwise,

⟨c′′ ⇝ e′′⟩ ≡

{
a(⟨c′′ ⇝ e1⟩)

a(⟨c′′ ∪ {e}⇝ e2⟩)

}
and e1 ⊆ e′′ = e1 ∪ e2 if ⟨c′′ ⇝ e1⟩ ∈ D.

3.2.3. Generalization as a partial order
To form a partial order on Prop using these generalization operations, we say that if pg generalizes pr,

there exists some sequence of generalizations that witnesses that fact:

Definition 3.1. pg ∈ Prop generalizes pr ∈ Prop, written pr ⊑ pg, if ∃g ∈ G∗, JgK(pr) = pg.

Theorem 3.2. ⊑ forms a partial order on Prop.

Proof. Reflexivity : ∀p ∈ Prop, J()K(p) = p =⇒ ∀p ∈ Prop, p ⊑ p.
Antisymmetry : Take p, q ∈ Prop such that p ⊑ q and q ⊑ p. Then there exist gp, gq ∈ G∗ such that

JgpK(p) = q and JgqK(q) = p. Proceed by case analysis on gp.
If gp = (), then q = JgpK(p) = J()K(p) = p.
Otherwise gp = (g, gs); we desire to show, using Theorem 3.1, that g cannot be “undone” by any

generalization and thus q ̸⊑ p. Let (Cp,Rp,Dp) = p, (C′,R′,D′) = JgK(p), and (Cq,Rq,Dq) = q.
If g = mergep[c1, c2 → cm], then |Cq| < |Cp|.
If g = relax_relp[c, r], then Rq(c) ≤ R′(c) < Rp(c) or c ̸∈ Cq.
If g = add_depp[c⇝ e], then either ⟨c⇝ ep⟩ /∈ Dp or ep ⊂ eq.
Thus, by Theorem 3.1, q ̸⊑ p.
Transitivity : Take p, q, r ∈ Prop such that p ⊑ q and q ⊑ r. Then there exist gp, gq ∈ G∗ such that

JgpK(p) = q and JgqK(q) = r. The composition of these generalizations is equal to the concatenation of their
sequences: JgqK(JgpK(p)) = Jgp; gqK(p). Furthermore, the concatenation of two finite sequences is a finite
sequence, so gp; gq ∈ G∗. As Jgp; gqK(p) = r, p ⊑ r.

3.3. Refinement
In addition to generalization of constraints, we are interested in refining them: adding new constraints or

increasing the strictness of existing ones. Refinements are dual to generalizations, so for each generalization
we expect a corresponding refinement.

3.3.1. One-step Refinements
Corresponding to relax_rel we have tighten_rel which raises the bound on the reliability of component c

to a higher constraint r > R(c):

tighten_rel(C,R,D)[_,_] : C → [0, 1] → Prop

tighten_rel(C,R,D)[c, r] ≜ (C,R′,D) (5)

8

where

R′(c′) ≜

{
r if c = c′

R(c′) otherwise
(5a)

To undo a merge, we split one component, cm, into two, c1 and c2 (where c1, c2 /∈ C \ {c}). When
splitting two components, we make each fully dependent on the other, as that is the most general set of
constraints we can generate. In other words, the result of splitp[cm → c1, c2] is the maximal element of the
set {q ∈ Prop | p = mergeq[c1, c2 → cm]}.

split(C,R,D)[_ → _,_] : C → Comps → Comps → Prop

split(C,R,D)[cm → c1, c2] ≜ (C′,R′,D′) (6)

where

C′ ≜ {c1, c2} ∪C \ {cm} (6a)

R′(c) ≜

{
R(cm) if c = c1 ∨ c = c2,

R(c) otherwise.
(6b)

D′ ≜
⋃

{s(⟨c⇝ e⟩) | ⟨c⇝ e⟩ ∈ D} (6c)

s(⟨c⇝ e⟩) ≜

⟨{c1, c2} ∪ c′ ⇝ e⟩
⟨{c1} ∪ c′ ⇝ e ∪ {c2}⟩
⟨{c2} ∪ c′ ⇝ e ∪ {c1}⟩

 if cm ∈ c⟨c⇝ e′ ∪ {c1, c2}⟩
⟨c⇝ e′ ∪ {c1}⟩
⟨c⇝ e′ ∪ {c2}⟩

 if cm ∈ e

{⟨c⇝ e⟩} otherwise.

(6d)

c′ ≜ c \ {cm} (6e)

e′ ≜ e \ {cm} (6f)

The resulting dependencies can be understood as the result of applying the following rewrite rules to
dependencies in D:

⟨· · ·1 cm ⇝ · · ·2⟩ 7→

⟨· · ·1 c1c2 ⇝ · · ·2⟩
⟨· · ·1 c1 ⇝ · · ·2 c2⟩
⟨· · ·1 c2 ⇝ · · ·2 c1⟩

⟨· · ·1 ⇝ · · ·2 cm⟩ 7→

⟨· · ·1 ⇝ · · ·2 c1c2⟩
⟨· · ·1 ⇝ · · ·2 c1⟩
⟨· · ·1 ⇝ · · ·2 c2⟩

Finally, remove_dep corresponds to undoing an add_dep operation. Adding a dependency ⟨· · ·1 ⇝ e⟩
states that e depends on all of · · ·1 and therefore every dependency containing · · ·1 is rewritten to preserve
Monotonicity. Removing a dependency ⟨· · ·1 ⇝ e⟩ states that e is independent of all components in · · ·1, so
every dependency whose causes are contained in · · ·1 is rewritten.

remove_dep(C,R,D)[_⇝ _] : P(C) → C → Prop

remove_dep(C,R,D)[c⇝ e] ≜ (C,R,D′) (7)

where

D′ ≜ {r(⟨c′ ⇝ e′⟩) | ⟨c′ ⇝ e′⟩ ∈ D} (7a)

r(⟨c′ ⇝ e′⟩) ≜

{
⟨c′ ⇝ e′ \ {e}⟩ if c′ ⊆ c,

⟨c′ ⇝ e′⟩ otherwise.
(7b)

9

The dependencies resulting from removing the dependency ⟨· · ·1 ⇝ e⟩ follow from the rewrite rule:

⟨· · ·2 ⇝ · · ·3 e⟩ 7→ ⟨· · ·2 ⇝ · · ·3⟩ if · · ·2 ⊆ · · ·1

3.3.2. Multi-step Refinements
As with generalizations, let R be the set of all refinement operations and R∗ be the set of all sequences

of refinements. We abuse notation slightly to define application of a sequence of refinements using the same
notation: for rs ∈ R∗, JrsK(p) is the result of applying that sequence of refinements to some system properties
p.

3.3.3. Refinement as the dual of generalization
Each generalization operation and its corresponding refinement are not necessarily inverses, as most

generalization operations map several elements of Prop to the same more general system (i.e., they are not
injective). Thus, we do not have that ∀g ∈ G, if q = JgK(p) then ∃r ∈ R, p = JrK(q). However, we can show
the opposite: if q = JrK(p), then p covers q: there is no r such that q ⊏ r ⊏ p.

Furthermore, the refinement operations form a dual order to the order defined by generalization:

Theorem 3.3. ∀pr, pg ∈ Prop, pr ⊑ pg if and only if ∃rs ∈ R∗, pr = JrsK(pg).

As such, pr refines pg if pg ⊒ pr, or, equivalently, pr ⊑ pg.

3.4. The Properties Lattice
To be able to use a Galois connection to relate our notions of generalization and refinement to MIS

models, we must define Prop as a lattice. As such, we need to define top and bottom elements of Prop,
least upper bounds (or joins), and greatest lower bounds (meets).

The top element of Prop is the one-element system with unconstrained component reliability:

⊤ ≜ ({c},R(c) = 0, {⟨c⇝ S⟩}). (8)

Any other one-element system constrains component reliability and thus can be generalized to ⊤ by relax_rel.
Removing the one dependency results in a system that does not meet the WF properties, and no further
dependencies can be added without adding another component. Finally, given p ∈ Prop, we can show p ⊑ ⊤
by repeatedly merging components in p until the result has one component, then relaxing that component’s
reliability bound, if necessary.

The bottom element of Prop is a special element which corresponds to an “overdetermined” system—one
where the constraints are contradictory. We do not concern ourselves with its representation, but simply
define it as the element ⊥ ∈ Prop such that ∀p,⊥ ⊑ p.

The join of two elements (C1,R1,D1) and (C2,R2,D2) is equal, up to renaming of components, to
(C1∩C2,min{R1,R2},D1∪D2). Joins can be computed by repeatedly applying merge to combine components,
then applying add_dep to add dependencies as needed, then applying relax_rel to reduce reliabilities if
necessary. The meet, likewise, is equal up to renaming of components to (C1 ∪C2,max{R1,R2},D1 ∩D2).
It can be shown that the meet can be generalized to either element by appropriate application of merge,
add_dep, and relax_rel.

4. MIS Models

Markov Imbeddable Structure models are one approach to deriving a system’s reliability from the reliability
of its components. These models consist of states and transitions between states caused by the failure of
components. The reliability of the system is determined by computing the probability of the system not
reaching the “failed” state after considering the effect of each component.

This paper considers MIS models where the states are defined by the components functional in that state;
e.g., 1101 corresponds to the state of a 4-component system where components 1, 2, and 4 are functional and
component 3 has failed. Components cannot repair themselves, so every transition is either from one state to

10

11 01 10

c1 : p c1 : q

c2 : p c2 : q

1

Figure 1: Two-Component Series System Markov Chain

that same state or from one state to a state with more failed components. The failed state is absorbing—once
the system fails, we are no longer interested in its behavior.

These transitions are usually represented in the form of transition probability matrices (TPMs) Ti, one
for each component. As the system always starts in the fully functional state, the initial state probability
vector is Π0 ≜ [1, 0, . . .]. Another vector u ≜ [1, . . . , 0] defines which states are considered functional. The
system reliability is given by the product of the initial state probabilities, the TPMs, and the u vector:

R(S) ≜ ΠT
0 ∗ T1 ∗ T2 ∗ · · · ∗ Tn ∗ u (9)

As an example, consider the system with two components in series where R(c1) = R(c2) = p = 1− q. The
TPM for both components is given by

T1 = T2 =

(
p q
0 1

)
and the resulting system reliability is

R(S) = ΠT
0 ∗ T1 ∗ T2 ∗ u = p2

The Markov chain this system follows is illustrated in Fig 1 where the transitions are labeled by the component
taking them and the probability of being taken.

4.1. Abstraction and Concretization
To apply our formalization of refinement and generalization to MIS models, we need to connect our

properties domain Prop to MIS models. We achieve this by an abstraction operator which converts system
constraints to MIS models and a concretization operator which derives constraints from MIS models.

To abstract an MIS model from (C,R,D) ∈ Prop, for each ci ∈ C let pi = 1− qi = R(ci) be its reliability
and let Ti be its TPM. Let n = |C| be the number of components in the system. Then, begin with the initial
fully-functional state 1 · · · 1 . For each dependency ⟨ci ⇝ e⟩ ∈ D, insert a transition from 1 · · · 1 to 1 · · · 1
with probability pi in Ti and a transition from 1 · · · 1 to the state where all components except ci and those
in e are functional with probability qi in Ti. If S ∈ e, then mark that state as “failed”. For each non-“failed”
state added in the previous step, let s be the components functional in that state and let f = C \ s be the set
of failed components. For each component ci ∈ s, select the dependency ⟨c⇝ e⟩ ∈ D where ci ∈ c and c is
the largest set such that c ⊂ f . Insert transitions from s to s with probability pi and from s to s \ e
with probability qi into Ti. For each component ci ∈ f , insert a transition from s to s with probability 1
into Ti. Repeat this step until there are no more non-failed states to consider.

Concretizing properties from an MIS model proceeds in an analogous fashion. For each Ti create a
component ci and set R(ci) = pi. For each ci, first let s′ be the set of components functional after ci fails
from the initial 1 · · · 1 state and add a dependency ⟨ci ⇝ C \ s′⟩ to D. Then consider all transitions in Ti

from state s to state s′ where s′ ⊂ s. Let f ≜ s \ s′ \ {ci} be the set of components that also fail as a
result of the failure of ci. Take ⟨c⇝ e⟩ ∈ D where ci ∈ c and c is the largest set such that c ⊂ (C \ s). If
e ̸= f , add a dependency ⟨C \ s \ {ci}⇝ f⟩.

11

4.2. Examples
As an example of the power of this approach, let us refine a 2-of-3 system from ⊤. Our starting system is

⊤ = ({c1},R(c1) = 0, {⟨c1 ⇝ S⟩}).

If we refine c1’s reliability to p by s1 = tighten_rel⊤[c1, p], the resulting system has reliability R(S) = p.

1 0c1 : p
c1 : q

1

First, we create another component via s2 = splits1 [c1 → c1, c2], we get the following system:

s2 = ({c1, c2},R(c1) = R(c2) = p, {
⟨c1 ⇝ c2,S⟩, ⟨c2 ⇝ c1,S⟩
⟨c1, c2 ⇝ S⟩

})

which abstracts to the Markov chain:

11 00

c1, c2 : p

c1, c2 : q

1

This gives R(S) = p2 as we now take two steps through the Markov chain.
We can avoid adding excessive dependencies later by removing two, making c1 independent: s3 =

remove_deps2 [c1 ⇝ c2,S].3

s3 = ({c1, c2},R(c1) = R(c2) = p, {
⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ c1,S⟩
⟨c1, c2 ⇝ S⟩

})

Removing these dependencies adds a new state to the Markov chain:

11

01

00c1, c2 : p
c2 : q

c1 : q

c1 : 1
c2 : p

c2 : q

c1, c2 : 1

This gives R(S) = p2 + pq—either both components remain functional, or c1 fails and c2 remains functional.
Next, we introduce c3 by s4 = splits3 [c2 → c2, c3].

s4 = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {
⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ c1, c3,S⟩, ⟨c3 ⇝ c1, c2,S⟩
⟨c1, c2 ⇝ S⟩, ⟨c1, c3 ⇝ c2,S⟩, ⟨c2, c3 ⇝ c1,S⟩

})

The Markov chain is similar to the one abstracted from s3, but c3 adds its own transition probabilities.

3This is equivalent to performing two remove_dep operations, one for the dependency on c2 and one for S.

12

111

011

000c1, c2, c3 : p
c2, c3 : q

c1 : q

c1 : 1
c2, c3 : p

c2 : q, c3 : q

1

This gives R(S) = p3 + p2q—either all components remain functional, or c1 fails and c2 and c3 remain
functional.

Finally, we arrive at the desired 2-of-3 system by removing unneeded dependencies: s5 = remove_deps4 [c2 ⇝
c1, c3,S] and s6 = remove_deps5 [c3 ⇝ c1, c2,S].

s6 = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {
⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩
⟨c1, c2 ⇝ S⟩, ⟨c1, c3 ⇝ c2,S⟩, ⟨c2, c3 ⇝ c1,S⟩

})

The abstracted Markov chain has two new states:

101

111 110

011 000

c1, c2, c3 : p

c1 : q

c2 : q

c3 : q c1, c2 : p
c3 : 1

c1, c2 : q

c1, c3 : p
c2 : 1

c1, c3 : q

c1 : 1
c2, c3 : p c2, c3 : q 1

This gives R(S) = p3 + 3p2q—either all components remain functional, or only one fails.

5. Superstates and Non-deterministic Choice

One problem MIS models face is state space explosion: in a naiv̈e model where every component is
independent of the others, adding a new component doubles the number of states in the model. A solution
to this problem, which does not require numerical approximation methods or otherwise reduce the accuracy
of the computed result, is to allow one state to represent more than one configuration of “up” components.
In the literature, these states are referred to as superstates; we have already seen examples of these in
various failed states, such as the superstate 01 10 in Figure 1. Thus far, we have modeled the “system failed”
superstate in an ad-hoc fashion; we now turn to the issue of modeling arbitrary superstates in Prop.

To motivate the following developments, we introduce an example of where superstates become useful.
Suppose we have a system with three independent components in parallel. The system is functional as long
as any single component remains functional. This reliability structure can be represented by the following
Markov chain (for readability, we elide the self-loops for each state):

13

111

011 101 110

001 010 100

000

c1
: q

c
2
:
q

c
3 : q

c
2
:
q

c
3 : q c1

: q
c
3 : q c1

: q

c
2
:
q

c1
: q

c
2
:
q

c
3 : q

The corresponding element of Prop is:

sstate = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {
⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩
⟨c1, c2 ⇝ ∅⟩, ⟨c1, c3 ⇝ ∅⟩, ⟨c2, c3 ⇝ ∅⟩
⟨c1, c2, c3 ⇝ S⟩

})

This model has R(S) = p3 + 3p2q + 3pq2. This is the worst-case situation of 3 components leading to 23

states. However, the identity of any failed component is irrelevant to the computation; knowledge of the
number of failed components suffices. We can reduce the state space of this model by creating superstates
011 101 110 and 001 010 110 , representing one and two failed components respectively:

111

011 101 110

001 010 100

000

c1, c2, c3 : q

c1, c2, c3 : q

c1, c2, c3 : q

In this model, we still have R(S) = p3 + 3p2q + 3pq2, but significantly fewer states and correspondingly
smaller matrices. It is also worth noting that using superstates does not require that all components have
the same reliability. Components are still considered individually when computing reliability; however, when
defining transitions between superstates, we “forget” the specific state of a superstate which characterizes the
system. If the system is in a superstate, we merely know that it is in one of the states of that superstate.

This notion of “forgetting” maps cleanly onto the concept of non-deterministic choice, denoted here with
the ⊕ operator. Given two sets C1,C2, the value of C1 ⊕ C2 is one of the two specified sets, but it is
unknown which set is chosen. By extending the notation of Deps to allow non-deterministic set choices to
appear in the cause of a dependency, we can represent the Markov chain:

14

ssuperstate = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {
⟨c1 ⊕ c2 ⊕ c3 ⇝ ∅⟩,
⟨c1, c2 ⊕ c1, c3 ⊕ c2, c3 ⇝ ∅⟩,
⟨c1, c2, c3 ⇝ S⟩

})

In the dependency ⟨c1 ⊕ c2 ⊕ c3 ⇝ ∅⟩, we know only that one of c1, c2, or c3 have failed, not which one.
This allows us to capture the notion of “one component” having failed. With this example in hand, we can
proceed to formally define and explore non-deterministic choice in Prop.

5.1. Non-deterministic choice of causes and effects
Non-deterministic choice plays a key role in abstraction and refinement for both software and systems [2].

In the process of deriving programs from specifications, it encodes the notion that one may pick arbitrarily
among the programs which meet a particular specification; any aspect left unspecified by the specification is
thus ambiguous. For example, given the specification “f(x) = y such that y ∗ y = x”, we may implement f(x)
by either sqrt(x) or -sqrt(x). Using the notation of non-deterministic choice, this specification can be
represented by f(x) = sqrt(x)⊕ -sqrt(x). When proving properties of f(x), we use the demonic choice
principle, which states that any statements true of a non-deterministic choice must hold regardless of which
case of the choice is taken. Thus, we cannot argue that f(x) ≥ 0, even though that property holds for one of
the cases of the choice. Effectively, the demonic choice principle requires us to consider every case.

In this work, we will use non-deterministic choices to distinguish between sets, rather than specifications:

Definition 5.1. Given a set of sets C = {C1,C2, · · · }, the set
⊕

C is one of the sets C1, C2, · · · . The
specific set is chosen arbitrarily. Denote

⊕
{C1,C2} by C1 ⊕C2.

⊕
{C1} = C1.

⊕
∅ has no value.

Note that non-deterministic choices can be “flattened”; that is,⊕{
C1,

⊕
C
}
=

⊕
{C1} ∪ C.

It follows that ⊕ is commutative and associative by commutativity and associativity of ∪. Furthermore,
C⊕C = C.

For convenience, we define a function to apply a set-valued function to each case of a non-deterministic
choice:

map⊕(f)
(⊕

C
)
=

⊕
{f(C) | C ∈ C} (10)

When introducing non-deterministic choice into the causes and effects of dependencies, we must be
careful to observe the demonic choice principle. Namely, once we generalize two dependencies ⟨c1 ⇝ · · ·⟩
and ⟨c2 ⇝ · · ·⟩ into ⟨c1 ⊕ c2 ⇝ · · ·⟩, erasing the distinction between the failure of c1 and c2, we must ensure
that all other dependencies involving c1 and c2 also “forget” which of the two has failed. This may entail
the definition of additional superstates. An analogous situation occurs when generalizing ⟨· · · ⇝ c1⟩ and
⟨· · ·⇝ c2⟩ into ⟨· · ·⇝ c1 ⊕ c2⟩.

As an example, consider what happens in the previous example if we create the superstate 011 101 110

but leave the states 001 , 010 , and 100 as-is. This would correspond to the following invalid properties:

ssuperstate = ({c1, c2, c3},R(c1) = R(c2) = R(c3) = p, {
⟨c1 ⊕ c2 ⊕ c3 ⇝ ∅⟩,
⟨c1, c2 ⇝ ∅⟩, ⟨c1, c3 ⇝ ∅⟩, ⟨c2, c3 ⇝ ∅⟩
⟨c1, c2, c3 ⇝ S⟩

}).

15

We attempt to define three transitions out of 011 101 110 , one for each component. In the case that we
consider the failure of c1, it is unclear whether the dependency ⟨c1, c2 ⇝ ∅⟩ or ⟨c1, c3 ⇝ ∅⟩ applies, since we
cannot determine whether it is c2 or c3 that has failed so far. The failure of c1 in superstate 011 101 110

cannot cause two transitions, so we must instead propagate forward the erasure of which component has failed
and define a transition from 011 101 110 to 001 010 when c1 fails. Continuing this reasoning, considering the
failure of c2, we would define a transition from 011 101 110 to 010 100 . However, 010 is already a member
of the superstate 001 010 , so we must instead expand this superstate to 001 010 101 . Therefore we arrive at
the result of the previous example, with a (super)state for zero, one, two, and three failed components.

As another example, consider a four-component system with the dependency ⟨c1 ⇝ c2 ⊕ c3⟩, where it
is ambiguous which component c1 causes to fail. This corresponds to a transition from 1111 to 0011 0101

caused by the failure of c1. An invalid dependency for this system would be ⟨c1, c2, c4 ⇝ ∅⟩, as this would
only cover one case of the 0011 0101 superstate. Instead, we could write ⟨c1, c2, c4 ⊕ c1, c3, c4 ⇝ ∅⟩, which
would define a transition from 0011 0101 to 0010 0100 when c4 fails.

5.2. Well-formedness properties with non-deterministic choice
We incorporate the requirements of the demonic choice principle into the well-formedness (WF) properties

defined in Section 3.1.2. Since we have
⊕

{C1} = C1, we can state all the WF properties in terms of
non-deterministic choice over a set of causes or set of effects, generalizing the properties defined earlier.

For initiality, we allow the component to be part of a non-deterministic choice:

∀c ∈ C,∃⟨
⊕

C′ ⇝ · · ·⟩ ∈ D where {c} ∈ C′. (NDC-Initiality)

Termination comes with two requirements: not only must the system fail, but in any non-deterministic
choice over failures, it must fail in every one:

∃⟨· · ·⇝
⊕

E⟩ ∈ D where ∃E ∈ E ,S ∈ E and

∀⟨· · ·⇝
⊕

E⟩ ∈ D where ∃E ∈ E ,S ∈ E, then ∀E ∈ E ,S ∈ E.
(NDC-Termination)

Monotonicity must hold for some particular cause and all resulting effects:

∀⟨
⊕

{C1,C2, · · · }⇝
⊕

{E1,E2, · · · }⟩ ∈ D

∀⟨
⊕

{C1 ∪C3,C2 ∪C4, · · · }⇝
⊕

{E3,E4, · · · }⟩ ∈ D

∀E ∈ {E1,E2, · · · },∀E′ ∈ {E3,E4, · · · },
∃C′ ∈ {C3,C4, · · · },E ⊆ E′ ∪C′

(NDC-Monotonicity)

Finally, we introduce a new property to ensure that the “forgetfulness” or “erasure” of demonic choice
is preserved. Before we can state this property, we introduce a notation, overloading the combinatorial
“binomial choice” operator to work on sets. Given a set of sets C = {C1,C2, · · · ,Cn} and an integer
0 ≤ x ≤ n, define

(C
x

)
to be the set of unions of combinations of C1, · · · ,Cn. Thus, for example,

(
C1,C2,C3

2

)
=

{C1 ∪C2,C1 ∪C3,C2 ∪C3}. Also,
(C
0

)
= ∅ and

(C
n

)
=

⋃
C.

∀⟨C1 ⊕ · · · ⊕Cn ⇝ E1 ⊕ · · · ⊕Em⟩ ∈ D

if ∃⟨
⊕

C′ ⇝ · · ·⟩ ∈ D where C1 ⊆ C′′ ∈ C′,

then C′ =

(
C1, · · · ,Cn

x

)
×
(
E1, · · · ,Em

y

)
for some 1 ≤ x ≤ n, 0 ≤ y ≤ m.

(NDC-erasure)

This rule forbids, for instance, the existence of two dependencies ⟨c1 ⊕ c2 ⇝ · · ·⟩ and ⟨c1 ⇝ · · ·⟩ and
likewise given the dependency ⟨c1 ⊕ c2 ⇝ c3 ⊕ c4⟩, any dependency with c1, c3 in the causes must be of the
form ⟨c1, c3 ⊕ c1, c4 ⊕ c2, c3 ⊕ c2, c4 ⇝ · · ·⟩. The associativity and commutativity of ⊕ means this rule applies
to any set of causes and effects in a non-deterministic choice.

16

5.3. Generalizations and refinements for non-deterministic choice
Introducing a non-deterministic choice constitutes a loss of information about the model, so it is therefore

a generalization. Likewise, removing a non-deterministic choice is a refinement.
Introducing a non-deterministic choice implicitly adds dependencies as needed to meet the WF properties.

Erasing the distinction between failure of a set of components C1 and C2 is done by replacing each instance
of either with a non-deterministic choice, then adding sufficient other terms to meet the combinatorial
requirements of NDC-erasure:

unify(C,R,D)[_,_] : P(C) → P(C) → Prop

unify(C,R,D)[C1,C2] ≜ (C,R,D′) (11)

where

D′ ≜
{
⟨
⊕

U(C′)⇝
⊕

U(E ′)⟩
∣∣∣ ⟨⊕ C′ ⇝

⊕
E ′⟩ ∈ D

}
(11a)

U(C) ≜

A(C)×
(
N(C1) ∪N(C2)

x(C)

)
if C1 ⊆ C′ ∈ C or C2 ⊆ C′ ∈ C

C otherwise.
(11b)

A(C) ≜ {C′ \N(C1) \N(C2) | C′ ∈ C} (11c)

N(C1) ≜ C′ where ⟨
⊕

C′ ⇝ · · ·⟩ ∈ D and C1 ∈ C′ (11d)

x(C) ≜ max

{
x′

∣∣∣∣ ∃B ∈
(
N(C1) ∪N(C2)

x′

)
,B ⊆ C′ ∈ C

}
(11e)

Refining by splitting a non-deterministic choice splits the cases into separate dependencies as needed,
first for the causes and then for the effects:

separate(C,R,D)[_ ⊕ _] : P(C) → P(C) → Prop

separate(C,R,D)[C1 ⊕C2] ≜ (C,R,D′′) (12)

where

D′ ≜
{
SC

(
⟨
⊕

C ⇝
⊕

E⟩
) ∣∣∣ ⟨⊕ C ⇝

⊕
E⟩ ∈ D

}
(12a)

SC
(
⟨
⊕

C ⇝
⊕

E⟩
)
≜

{
⟨
⊕

{C′ ∈ C | C1 ⊆ C′ or C2 ⊈ C′}⇝
⊕

E⟩
⟨
⊕

{C′ ∈ C | C2 ⊆ C′ or C1 ⊈ C′}⇝
⊕

E⟩

}
if C1 ⊆ C′ ∈ C
or C2 ⊆ C′ ∈ C

⟨
⊕

C ⇝
⊕

E⟩ otherwise.

(12b)

D′′ ≜
{
SE

(
⟨
⊕

C ⇝
⊕

E⟩
) ∣∣∣ ⟨⊕ C ⇝

⊕
E⟩ ∈ D′

}
(12c)

SE
(
⟨
⊕

C ⇝
⊕

E⟩
)
≜

{
⟨
⊕

C ⇝
⊕

{E′ ∈ E | C1 ⊆ E′ or C2 ⊈ E′}⟩
⟨
⊕

C ⇝
⊕

{E′ ∈ E | C2 ⊆ E′ or C1 ⊈ E′}⟩

}
if C1 ⊆ E′ ∈ E
or C2 ⊆ E′ ∈ E

⟨
⊕

C ⇝
⊕

E⟩ otherwise.

(12d)

Consider the following example of generalization by introduction of non-deterministic choices. We begin
with a system with all components in parallel and independent except that the failure of c1 and c2 causes
the failure of c3. The MIS model for this system contains the following Markov chain (again, with self-loops
elided for readability):

17

1111

1110 1011 0111 1101

1010 0110 1100 1001 0101

0100 1000 0001

0000

c
1 : qc 2

: q

c
3 : qc4

: q

c
1 : q

c
2
:
q

c
3 : q

c
1
:
q

c 2
: q

c4
: qc

1 : q

c
3 : q

c 4
: q

c
2
:
q

c
3 : qc4

: q

c
1 : q

c
3 : q

c
2
:
q

c 3
: q

c1
: q

c
2
:
q

c
1 : q

c 4
: q

c
2
:
q

c4 :
q

c
1
:
q

c
2 : q c4

: q

With the corresponding abridged properties:

s1 = ({c1, c2, c3, c4},R(c1) = R(c2) = R(c3) = R(c4) = p, {
⟨c1 ⇝ ∅⟩, ⟨c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩, ⟨c4 ⇝ ∅⟩,
⟨c1, c2 ⇝ c3⟩, ⟨c1, c2, c3, c4 ⇝ S⟩

}).

Suppose we generalize the system via s2 = unifys1 [c1, c2]. Transitions caused by c1 and c2 consequently
align:

18

1111

1110 1011 0111 1101

1010 0110 1100 1001 0101

1000 0100 0001

0000

c 1
, c

2
:
q

c3 : qc4
: q

c 1
,c

2
:
q

c3 : q

c 1
, c

2
:
q

c4
: q

c
1 , c

2 : q

c3 : qc4
: q

c
1 , c

2 : q

c
3
:
q

c1,
c2

: q

c
1 ,c

2
:
q

c4 : q

c1 , c2 : q c4
: q

With the corresponding abridged properties:

s2 = ({c1, c2, c3, c4},R(c1) = R(c2) = R(c3) = R(c4) = p, {
⟨c1 ⊕ c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩, ⟨c4 ⇝ ∅⟩,
⟨c1, c2 ⇝ c3⟩, ⟨c1, c2, c3, c4 ⇝ S⟩

}).

We can see that states with components c1 and c2 are combined, and c1 and c2 share all transi-
tions. However, the effect of unify is more complex than merge; consider a further generalization of
s3 = unifys2 [c1, c3, c1, c4] followed by s5 = unifys4 [c2, c3, c2, c4]:

19

1111

1110 1011 0111 1101

1010 0110 1001 0101 1100

1000 0100 0001 0010

0000

c 1
, c

2
:
q

c3 : qc4
: q

c
1 , c

2 : q

c3 , c4 : q c1, c2
: q

c 4
: q

c
1 , c

2
: q

c 3
, c

4
: q

c
1 , c

2
: q

c
3 ,c

4
:
q

c1,
c2

: q

c
1 , c

2 : q c 3
, c

4
: q

With the corresponding abridged properties:

s5 = ({c1, c2, c3, c4},R(c1) = R(c2) = R(c3) = R(c4) = p, {
⟨c1 ⊕ c2 ⇝ ∅⟩, ⟨c3 ⇝ ∅⟩, ⟨c4 ⇝ ∅⟩,
⟨c1, c2 ⇝ c3 ⊕ c4⟩, ⟨c1, c2, c3 ⊕ c1, c2, c4 ⇝ ∅⟩,
⟨c1, c3 ⊕ c2, c3 ⊕ c1, c4 ⊕ c2, c4 ⇝ ∅⟩,
⟨c1, c2, c3, c4 ⇝ S⟩

}).

Of note here: c3 and c4 stay independent (states 1101 and 1110 , respectively) as long as both c1 and
c2 are functional. However, once one of c1 or c2 fails, states containing a failed c3 or c4 are merged into
superstates. Thus, the behavior of this system is beyond something expressible with merge alone. Finally, a
note on refinement: separates5 [c3 ⊕ c4] would result in both dependencies ⟨c1, c2 ⇝ c3⟩ and ⟨c1, c2 ⇝ c4⟩, as
the unify generalization erased the knowledge of which of c3 or c4 fails due to the failure of c1 and c2. The
initial behavior can be refined from this model via calls to remove_dep.

6. Related Work

Markov chains form the theoretical basis for numerous system reliability analyses. Of particular relevance
to this work are two applications of MIS modeling to smart grids—power grids augmented with cyber

20

monitoring and control capabilities to improve their dependability [3, 4]. These studies demonstrate how MIS
modeling can be applied to real-world systems to capture system reliability and component interdependencies.

Refinement of specifications for software programs has been studied extensively; see [2, 5] for an intro-
duction and [6] for a recent survey of the literature. The essence of program specification and refinement is
augmenting a programming language with a specification language. Specifications describe “what” a program
should do; as a specification is refined, it begins to also describe “how” a program meets that specification.
For example,

√
x∗

√
x = x is a specification for a square root function; this specification can be refined further

until the programmer arrives at an implementation of various root-finding techniques. Thus, programs are
specifications that are also executable. To derive programs from non-executable specifications, a refinement
relation is defined and various refinements of specifications are developed. This allows one to start with
a high-level specification of a program’s behavior and derive, through repeated refinement, an executable
program whose specification refines the initial specification.

Research on refinement of Markov chains has taken two forms. The first focuses on Interval Markov
Chains (IMCs) and their extension, Constraint Markov Chains (CMCs) [7, 8]. In these formalisms, transition
probabilities are not given exactly, but are bounded within an interval or given by algebraic constraints,
respectively. As each IMC or CMC corresponds to a collection of Markov chains that satisfy the requirements
given, it is possible to define refinement directly in terms of these formalisms, rather than using a separate
“system constraints” formalism, as we do. Each system specification can be written as an IMC or CMC and
then refined into a complete system model via refinement and conjunction operations.

The second approach uses counterexample generation to validate Markov chain abstractions used in model
checking [9]. Starting with a coarse approximation of the original Markov chain, model checking is performed
until a counterexample is found. This counterexample is checked against the original specification; if the
counterexample does not hold, the approximate system is refined so the counterexample no longer holds.
This process repeats until a genuine counterexample is found (one that holds for the original specification) or
the model checking algorithm cannot find a counterexample. A related work [10] bounds the uncertainty
introduced by this approach to state-space reduction by separately modeling the uncertainty present in the
model and the uncertainty added through abstraction.

7. Conclusion

In this paper, we have proposed and demonstrated an approach to refinement and generalization of MIS
reliability models. Key to this approach is a system constraints domain, which captures the behavior of a
system in an abstract, easily manipulated fashion. These constraints describe the components of the system,
their reliability, and dependencies that describe how one set of component failures can trigger another. Given
these constraints, we create generalization and refinement operators that allow us to relax or add constraints
as needed. Thus, we can simplify a system for easier evaluation by generalizing it or we can iteratively develop
one through repeated refinement. Finally, we link these constraints to MIS reliability models, enabling us to
refine or generalize models of a common modeling formalism.

References

[1] N. Jarus, S. Sedigh Sarvestani, A. R. Hurson, Formalizing cyber–physical system model transformation via abstract
interpretation, in: 19th IEEE International Symposium on High Assurance Systems Engineering (HASE), 2019, pp. 107–114.
doi:10.1109/HASE.2019.00025.

[2] A. McIver, C. Morgan, Abstraction, Refinement, and Proof for Probabilistic Systems, Springer monographs in computer
science, Springer Science + Business Media Inc., 2005.

[3] M. N. Albasrawi, N. Jarus, K. A. Joshi, S. Sedigh Sarvestani, Analysis of reliability and resilience for smart grids, in: 38th
Annual IEEE Computer Software and Applications Conference, 2014, pp. 529–534. doi:10.1109/COMPSAC.2014.75.

[4] K. Marashi, S. Sedigh Sarvestani, A. R. Hurson, Consideration of cyber-physical interdependencies in reliability modeling
of smart grids, IEEE Trans. on Sustainable Computing 3 (2) (2018) 73–83. doi:10.1109/TSUSC.2017.2757911.

[5] C. Morgan, Programming from Specifications, Prentice Hall international series in computer science, Prentice Hall, 1990.
[6] S. Gulwani, O. Polozov, R. Singh, Program synthesis, Foundations and Trends in Programming Languages 4 (1-2) (2017)

1–119. doi:10.1561/2500000010.
URL https://www.nowpublishers.com/article/Details/PGL-010

21

https://doi.org/10.1109/HASE.2019.00025
https://doi.org/10.1109/COMPSAC.2014.75
https://doi.org/10.1109/TSUSC.2017.2757911
https://www.nowpublishers.com/article/Details/PGL-010
https://doi.org/10.1561/2500000010
https://www.nowpublishers.com/article/Details/PGL-010

[7] B. Caillaud, B. Delahaye, K. G. Larsen, A. Legay, M. L. Pedersen, A. Wąsowski, Compositional design methodology with
constraint Markov chains, in: 7th International Conference on the Quantitative Evaluation of Systems, 2010, pp. 123–132.
doi:10.1109/QEST.2010.23.

[8] B. Delahaye, K. G. Larsen, A. Legay, M. L. Pedersen, A. Wąsowski, Consistency and refinement for interval Markov chains,
Journal of Logic and Algebraic Programming 81 (3) (2012) 209–226. doi:10.1016/j.jlap.2011.10.003.
URL https://www.sciencedirect.com/science/article/pii/S1567832611000956

[9] R. Chadha, M. Viswanathan, A counterexample-guided abstraction-refinement framework for Markov decision processes,
ACM Trans. on Computational Logic 12 (1) (2010) 1:1–1:49. doi:10.1145/1838552.1838553.
URL http://doi.acm.org/10.1145/1838552.1838553

[10] M. Kattenbelt, M. Kwiatkowska, G. Norman, D. Parker, A game-based abstraction-refinement framework for Markov
decision processes, Formal Methods in System Design 36 (3) (2010) 246–280. doi:10.1007/s10703-010-0097-6.
URL http://link.springer.com/10.1007/s10703-010-0097-6

22

https://doi.org/10.1109/QEST.2010.23
https://www.sciencedirect.com/science/article/pii/S1567832611000956
https://doi.org/10.1016/j.jlap.2011.10.003
https://www.sciencedirect.com/science/article/pii/S1567832611000956
http://doi.acm.org/10.1145/1838552.1838553
https://doi.org/10.1145/1838552.1838553
http://doi.acm.org/10.1145/1838552.1838553
http://link.springer.com/10.1007/s10703-010-0097-6
http://link.springer.com/10.1007/s10703-010-0097-6
https://doi.org/10.1007/s10703-010-0097-6
http://link.springer.com/10.1007/s10703-010-0097-6

	Introduction
	Background
	Properties
	Dependencies
	Equivalences
	Well-formedness Properties
	Examples

	Generalization
	One-step generalizations of dependencies
	Multi-step generalization of dependencies
	Generalization as a partial order

	Refinement
	One-step Refinements
	Multi-step Refinements
	Refinement as the dual of generalization

	The Properties Lattice

	MIS Models
	Abstraction and Concretization
	Examples

	Superstates and Non-deterministic Choice
	Non-deterministic choice of causes and effects
	Well-formedness properties with non-deterministic choice
	Generalizations and refinements for non-deterministic choice

	Related Work
	Conclusion

