
1

Observation, Analysis, Modeling, and Classification
of USB Host Controller Operation Under

Electro-Magnetic Interference
Natasha Jarus, Member, IEEE, Joel Schott, Laika Klingbeil, Sahra Sedigh Sarvestani, Senior Member, IEEE

Department of Electrical and Computer Engineering
Missouri University of Science and Technology, Rolla, MO 65409, USA

Email: {jarus, jnskbx, ackgg3, sedighs}@mst.edu

Abstract—One source of malfunctions in electronics is electro-
magnetic interference (EMI), which can cause software glitches,
system crashes, and even permanent hardware damage. Our goal
is to study the software effects of EMI with the intent of detecting
EMI events and potentially mitigating the software errors they
cause. We developed a software instrumentation approach which
allows us to monitor the operation of system peripherals. We
collect a set of baseline sequences where the system is not exposed
to interference and then a set of sequences where the system is
exposed to EMI.

To determine whether our instrumentation detected a differ-
ence in operation correlated with EMI, we modeled each sequence
as a categorical time series and performed statistical analysis.
We aggregated measures of variance and autocorrelation for
the baseline and EMI-exposed sequences, then compared the
statistics of the two sets. These tests revealed an increase in
variation in EMI-exposed sequences as well as changes in
the autocorrelation structure between the baseline and EMI-
exposed datasets. Based on these results, we concluded that our
instrumentation is precise enough to capture differences in system
operation due to EMI.

To use those differences to predict whether the system is being
interfered with, we applied several classification algorithms to the
datasets. A key observation from these attempts is that the tempo-
ral relationship of the states is critical to classifier performance.
We found a gradient boosted random forest classifier to have
the best performance identifying sub-sequences of EMI-exposed
states.

Index Terms—EMC, computers

I. INTRODUCTION

Modern electronics are becoming increasingly susceptible
to electromagnetic interference (EMI). As components be-
come smaller and clock speeds and data transfer rates rise,
electronics become susceptible to interference from smaller
electromagnetic fields [1]. At the same time, high voltage
power supplies and other equipment required to build EMI-
emitting devices have become less expensive and more easily
obtained. Thus, a critical design goal for new electronics is to
be able to withstand or recover from such interference.

EMI manifests in electronics in a variety of ways. Pro-
gram operation may be interrupted, data in memory or being
transmitted across a link may be corrupted, or sensors may
report bizarre values or stop responding. In the worst case,
system resets and permanent hardware damage can occur.
For consumer hardware, this might be merely an annoyance,

but in safety-critical hardware, such as that in industrial
control systems or modern computer-laden vehicles, EMI can
have significantly more severe effects. Furthermore, control
electronics are typically more vulnerable than consumer elec-
tronics due to the wiring which connects a control processor
to its numerous sensors and actuators [2].

In order to design EMI-robust and -resilient systems, it is
imperative to understand where EMI enters the system, how
it travels through the hardware, and the resulting effects it has
on hardware and software operation. Our goal is to investigate
low-level EMI effects on commercial hardware using software
instrumentation. To accomplish this, we have created a novel
technique for instrumenting peripheral devices, such as USB
controllers, network communication hardware, and sensors.
This instrumentation is precise — it captures exactly the
operation of the peripheral as seen by the system — without
interfering with or burdening the system. Thus it can be used
in tandem with the control software a system would be running
in the field, making test conditions more realistic.

We desire to use the data collected from our instrumentation
to several ends. First, we seek to statistically characterize the
operation of a given peripheral both under “typical” operation
and under EMI exposure. This will validate that our instrumen-
tation is capable of capturing the effects of EMI on the chosen
peripheral. Second, we apply classification algorithms to this
data, labeling peripheral operation as either “not experiencing
interference” or “experiencing interference”.

With these classifiers in hand, we can proceed to more
detailed analysis and mitigation. Analysis of operation that is
classified as “experiencing interference” will give a low-level
understanding of how that particular peripheral is affected by
EMI. This may lead to further understanding of points where
the hardware is weak to EMI. It may also lead to better EMI
mitigation strategies, allowing the system to recover from EMI
without requiring a complete reset. Furthermore, we may be
able to enable the peripheral to continue operating during an
EMI event, albeit at a reduced performance level.

The remainder of this document outlines our work on these
goals. We situate our work in the context of related work in
Section II. Section III discusses the instrumentation approach,
experimental design and procedure, and data processing. Sta-
tistical analysis techniques used to achieve our second goal,
along with results, are discussed in Section IV. Classification

2

approaches are covered in Section V. Section VI summarizes
our results so far and enumerates open questions about our
work.

II. BACKGROUND AND RELATED LITERATURE

The effects of EMI can be categorized according to their
mechanism, broadly no effect, interference, or destruction; by
their duration, ranging from observed only for the duration of
an EMI event to permanent hardware damage; and by their
criticality: [3]

U Unknown: Unobserved or indeterminate due to other
failures

N No effect: System fulfils its mission without disturbance
I Interference: Disturbance does not influence the sys-

tem’s function
II Degradation: Disturbance impairs system capability or

efficiency
III Loss of main function: Disturbance prevents system

from functioning.
Assessing the systemic effect of EMI on a sub-system incor-
porates these three perspectives plus knowledge of the sub-
system’s criticality in the function of the system.

Low-level investigation of EMI incorporates both model-
ing [4] and experimentation [5, 6]. These studies provide a
detailed understanding of EMI-related component faults and
suggest physical mitigation techniques [7]. However, their
precision and experimental rigor (e.g., requirements for PCB
design and instrumentation) make them infeasible for analyz-
ing large-scale systems or consumer hardware.

System-level EMI analysis for electromagnetic compati-
bility purposes primarily focuses on EMI events with type
II or III criticality. The effect of interference is determined
based on reported alarms, errors recorded in system logs,
loss of network traffic, user-visible “glitches” in displays or
audio, or system crashes or resets [8, 9]. Such studies can
characterize whole systems or focus on the vulnerability of
specific sub-systems [10]. A variety of confounding factors
must be considered when assessing system vulnerability to
EMI, including EMI frequency and waveform, simultaneous
exposure to multiple waveforms, waveform reflections, me-
chanical vibrations, and intermodulation effects [11, 12].

While shielding is an effective method for mitigating EMI
effects [2], it is often not feasible or cost-effective, especially
for systems that are frequently upgraded or used in environ-
ments where EMI exposure has not been characterized. EMI
resilience takes a complementary approach wherein systems
are continually monitored for interference and improved as
required [13, 14].

As part of an EMI resilience program, existing system
peripherals have been investigated for use as EMI sensors.
Errors from USB and PS/2 devices and serial data commu-
nication rates have been found to be correlated with EMI
exposure [15, 16]. Furthermore, analog sensors including
temperature sensors for hard drives and processors and wifi
and cellular received power indicators also show anomalies
under EMI exposure [17]. In addition to these studies, software
instrumentation for electrostatic discharge detection has been
investigated in [18–20].

Client
Applications

USB
Peripheral

Drivers

USB Host
Controller

Driver

USB Host
Controller

USB
Peripheral
Hardware

Software Hardware

Host Controller Interface

Fig. 1: USB communication architecture

Another key part of EMI resilience is detecting anomalies
in sensor data. While there is little published research on
detecting EMI-caused anomalies, a number of studies have
focused on efficient detection of anomalies in digital and
analog sensor data. False data injection, where sensor values
are spoofed to hide a physical fault, can be detected through
clustering or statistical analysis [21, 22]. Detection of faults or
attacks from instrumented software or processor performance
counters is also feasible via a combination of classification
and statistical correlation [23, 24].

The distinction of our work is twofold. Our instrumentation
captures much finer-grained events, offering insight into EMI
events with U or I criticality as well as II or III criticality.
Furthermore, we pioneer the use of categorical time series
statistics and classification algorithms in characterizing and
identifying EMI-related operation anomalies. We use these
tools to validate our instrumentation and to identify anomalous
sequences of events as a foundation for building real-time EMI
detection software or for root-cause analysis of EMI-caused
failures.

III. OBSERVATION

This section details the approach we took to instrument our
chosen peripheral, a USB host controller. It also describes
our experimental design and the data collected from our
experiments.

A. Device & Instrumentation

We have chosen to instrument a USB host controller for
our experiments, since USB is widely used and peripherals
are readily available. The role of the USB host controller
is to handle the physical communication between the host
computer and the various USB devices connected to it. All
control and data communications to or from attached USB
devices go through the host controller. The host controller
connects directly to the USB power and data lines, making it
an excellent point to detect EMI entering the system through
those points. This architecture is depicted in Figure 1.

The host computer communicates with the host controller
via a collection of memory locations called registers. The
host controller updates these registers as it performs various
operations. It can also alert the host computer that an event has
happened via interrupts. Our instrumentation must be based
on these registers and interrupts, as they are all the visibility
the host computer has into the internal operation of the host
controller.

For our experiments, we selected the well-documented
and affordable Rock Pro 64 system which uses a Rockchip
RK3399 System-on-Chip that has built-in USB 3.0 and 2.0

3

host controllers. We focus on the USB 2.0 host controller,
which conforms to the Enhanced Host Controller Interface
(EHCI) specification [25]. This specification details both the
physical power and communication requirements for the host
controller and the contents of the host controller’s registers.
We installed a Linux operating system on this device running
version 4.4.202-1237-rockchip-ayufan of the Linux
kernel. The kernel contains a driver — a software program
— that configures and manages communication with the host
controller.

Our instrumentation is performed by making slight modifi-
cations to the EHCI host controller driver. This driver has a
number of procedures which are run when the host controller
causes an interrupt. We modify these procedures to record a
snapshot of all the host controller register values before the
driver modifies them. In this fashion, we can precisely capture
the system-visible operation of the host controller without
additional overhead from redundant checks.1 An example
snapshot is shown in Figure 2.

B. Experimental Setup
When performing experiments, we need to generate traffic

on the USB bus to stimulate host controller operation and,
consequently, the creation of register snapshots by our instru-
mentation. To keep test conditions consistent, we connect only
one USB flash drive to the system and copy the same file to
it in each test. This produces constant traffic to the USB host
controller for the duration of one EMI injection. To speed up
the rate at which experiments were performed, we developed
a script which automated this task as well as the task of saving
the log of snapshots after an experiment.

Two types of experiments were performed, termed baseline
and EMI-exposed. For both tests, our instrumented driver
was used and USB traffic was generated as described above.
The baseline tests allow us to capture the typical operation
of the host controller and are performed with the device,
consisting of the computer and flash drive, sitting on a bench.
Our assumption is that any interference arising from these
conditions is typical of what the device should withstand under
normal operation and thus not meaningful to distinguish from
truly interference-free operation.

EMI-exposed tests are conducted with the device placed
between the plates of the EMI generator described in [26]. This
generator repeatedly produces a 30 MHz damped sinusoidal
electric field wave which interferes with the device operation.
Tests were carried out to characterize the limits of what the
device can withstand without resetting the host computer or
causing permanent harm to the device — conditions under
which any software instrumentation will struggle to accurately
capture system operation. Tests are carried out with the device
placed vertically or horizontally in the generator, as orientation
can affect how the EMI enters the device.

C. Collected Data
EMI-exposed experiments were carried out on two separate

dates. Along with each log of register snapshots, we saved

18.6% wall clock overhead; 37.9% CPU cycle overhead.

Register snapshot:
Jul 29 21:38:38 rockpro64 kernel: [2789.449136]
[EHCI DEBUG DUMP ehci_handshake] 0x10025, 0x8009,
0x37, 0x1abb, 0x0, 0xdfb5d000, 0xdfb5b000, 0x0, 0x1,
0x10025, 0x10025

Corresponding state:
Driver Function ehci_handshake
Command 0x10025
Status 0x8009
Interrupt Enable 0x37
TX Fill Tuning 0x0
“Configured” Flag 0x1
USB Mode 0x10025
USB Mode Extended 0x10025

Fig. 2: EHCI host controller register snapshot and correspond-
ing state

the transferred file as written to the USB drive. None of these
files exhibit corruption, so further analysis of that data is not
merited. In addition, we recorded the associated field strength
and device orientation.

We gathered a total of 24 baseline sequences and a total of
47 EMI-exposed sequences from our experiments. Note that
sequences vary in length due to changes in system operation
such as crashes, USB device disconnects, and data frame
retransmissions.

We interpret these logs of register snapshots as sequences
of host controller operation states; Figure 2 shows an example
snapshot and state. States and snapshots correspond one to
one; each state is defined by the register values in its corre-
sponding snapshots. We treat two states as equal when their
register values are all equal, excluding the values of some
registers which are set only by the host controller driver and
thus do not reflect host controller operation.2

We define the state space to be S = {s1, · · · , s19} where
each si corresponds to a specific unique state observed in our
data. See Appendix A for the complete listing of the state
space.

IV. ANALYSIS

Our experimental process produces sequences of states; we
analyze these sequences to determine whether the sequences
from baseline experiments differ from those produced by EMI-
exposed experiments. We can model these data as categorical
discrete time series: sequences of observations of states from S
over time. These states are discrete, rather than continuous, and
unordered, meaning one cannot be ranked less than another.
The events where we take our observations are the interrupts
from the host controller; the times between events are stochas-
tically distributed. While the space of possible register values
is quite large, most of the possible states do not arise in
practice: our data contain 19 distinct states. Further analysis
is required to determine whether all registers are critical to
determining the presence of EMI or if it is possible to reduce
the state space further.

Formally, the jth time series contains nj observations
(x1, · · · , xnj

) from a stochastic process {Xt} ∈ S. The

2The registers we exclude are frame_index, segment, frame_list,
and async_next.

4

number of observations nj can be modeled as an observa-
tion from a random variable N determining the sampling
time of each sequence. We have two datasets: baseline data
DB = {(xt, 1 ≤ t ≤ nj) | 1 ≤ j ≤ 24} and EMI-exposed
data DE = {(xt, 1 ≤ t ≤ nj) | 25 ≤ j ≤ 72}. Our
assumption is that the sequences in DB are generated from one
stochastic process and the sequences in DE are generated from
another. We make no further assumptions about independence
or identicality of distribution.

In summary, this section demonstrates that our instrumenta-
tion is capable of detecting changes in device operation when
exposed to EMI. To do so, we characterize the time series
in DB and DE using categorical time series equivalents of
variance and autocorrelation. Significant differences in these
measures indicate that our instrumentation is effective.

A. Variance & Dispersion

One question we might ask of a dataset is, “how much
variation does it have?” For real-valued data, the variation in
a dataset is quantified by variance; however, this measure is
derived from the mean, which is not defined for categorical
data. Instead, we measure dispersion: a widely disperse distri-
bution is close to a uniform distribution, whereas a minimally
disperse distribution is close to a one-point distribution. The
more disperse a distribution is, the more uncertain we are about
the outcome of observing the random variable.

Several dispersion measures have been proposed; we choose
two measures which are suitable for our particular datasets.
One measure is the Gini index [27, §6.2.1], defined as

νG =
d+ 1

d

1−
∑
j∈S

π2
j

 , (1)

where d+1 is the number of categories (in our case, 19), S is
the set of categories (in our case, the set of host controller
states as defined in §III-C), and πj is the probability of
observing the jth category. The value of the Gini index falls
in the range [0; 1], with 0 indicating a one-point, minimally
disperse distribution and 1 indicating a uniform, maximally
disperse distribution.

The other measure we have chosen is the extropy [28] of a
distribution, defined as

νEx =
−1

d ln
(
d+1
d

) ∑
j∈S

(1− πj) ln(1− πj). (2)

Extropy shares the same range and behavior as the Gini
index: higher extropy means a more disperse distribution.
Extropy differs from information theory’s entropy in one
aspect: entropy is undefined if any πj = 0, whereas extropy
is undefined if any πj = 1. As our datasets do not contain
any one-point distributions, we choose extropy as a measure
of variance.

Dispersion measures for each time series are aggregated us-
ing box plots in Figures 3a and 3b. Both measures qualitatively
agree: the baseline time series are less disperse than all but a
few of the EMI-exposed time series. In the November dataset,
where most interference was near the limit of what the system

could handle, all time series are more disperse than baseline
time series.

B. Autocorrelation & Serial Dependence

In addition to variance, we can characterise time series data
by how repetitive it is. Conceptually, this is determined by how
similar the time series is to a copy of itself shifted back by one
or more time steps (called lag). For real-valued time series,
this measure is called autocorrelation; however, it depends on
expected values, which are not defined for categorical data.

The corresponding categorical time series property is known
as signed serial dependence. These measure various properties
of the conditional lagged bivariate probabilities pi|j(k) =
pij(k)
πj

= P (Xt = i | Xt−k = j). pi|j(k) is the probability
of observing i at time t given that j was observed at time
t− k, or, in other words, at lag k.

• Serial Independence occurs when observing j at t − k
gives no insight into what might be observed at t.
Equivalently, pi|j = πi for any i, j ∈ S.

• Positive Serial Dependence occurs when observing i at
t − k means we observe i again at t. Equivalently, for
any i, pi|i = 1.

• Negative Serial Dependence occurs when observing i at
t− k means we will not observe i at t. Equivalently, for
any i, pi|i = 0.

We select two measures of signed serial dependence that
relate to our chosen dispersion measures. The first measure,
Cohen’s κ [27, §6.3] is defined by

κ(k) =

∑
j∈S

(
pjj(k)− π2

j

)
1−

∑
j∈S π2

j

. (3)

Values of κ(k) fall in the range
[
−

∑
j∈S π2

j

1−
∑

j∈S π2
j
; 1

]
, with 0

corresponding to serial independence, positive values corre-
sponding to positive serial dependence, and negative values
corresponding to negative serial dependence. Note that the
denominator of the lower bound for κ(k) scales negatively
with the Gini index of the marginal distribution π of the
dataset. Thus, κ(k) is undefined when π is a one-point
distribution. In the independent and identically distributed
(i.i.d.) case, that is, when a sequence is serially independent,
Cohen’s κ follows a normal distribution.

The second measure of serial dependence we selected is a
modified version of κ(k). This measure, κ⋆(k) [29] is defined
by

κ⋆(k) =
∑
j∈S

pjj(k)− π2
j

1− πj
. (4)

Values of κ⋆(k) fall in the range
[
−
∑

j∈S
π2
j

1−πj
; 1
]
, with

positive values corresponding to positive serial dependence
and vice versa. As with extropy and κ(k), κ⋆(k) is undefined
in the case that π is a one-point distribution. More disperse
datasets also have a wider range of κ⋆(k) values. In the i.i.d.
case, as with Cohen’s κ, κ⋆ follows a normal distribution.

We compute Cohen’s κ and κ⋆ for lags 1–15 and addition-
ally 20–24 and 31–35 to confirm recurring serial dependence

5

(a) Gini dispersion measure for
each dataset as well as for all EMI-
exposed time series (“exposed”)

(b) Extropy dispersion measure for
each dataset as well as for all EMI-
exposed time series (“exposed”)

(c) Cohen’s κ for baseline data

(d) Cohen’s κ for EMI-exposed
data

(e) Modified κ⋆ for baseline data

(f) Modified κ⋆ for EMI-exposed
data

Fig. 3: (a), (b): Dispersion measures. (c)–(f): Signed serial dependence measures for lags 1–15, 20–24, and 31–35.

Cohen’s κ Modified κ⋆

Baseline EMI-exposed Baseline EMI-exposed

Lag % +ve % −ve % +ve % −ve % +ve % −ve % +ve % −ve

1 33.3 0.0 95.6* 0.0 0.0 0.0 42.2 0.0
2 0.0 41.7 2.2 0.0 0.0 0.0 0.0 0.0
3 100.0+ 0.0 13.3 4.4 100.0+ 0.0 6.7 2.2
4 0.0 100.0+ 0.0 100.0+ 0.0 83.3+ 0.0 97.8+
5 0.0 100.0+ 0.0 100.0+ 0.0 79.2+ 0.0 93.3+

6 100.0+ 0.0 4.4 91.1? 91.7+ 0.0 2.2 82.2?
7 0.0 100.0+ 0.0 100.0+ 0.0 66.7+ 0.0 97.8+
8 0.0 12.5 0.0 8.9 0.0 0.0 0.0 2.2
9 100.0+ 0.0 13.3 0.0 95.8+ 0.0 6.7 0.0

10 0.0 4.2 73.3* 0.0 0.0 0.0 33.3 0.0

11 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0 100.0+ 0.0
12 100.0+ 0.0 97.8* 0.0 100.0+ 0.0 48.9 0.0
13 0.0 87.5* 2.2 0.0 0.0 0.0 0.0 0.0
14 20.8 0.0 6.7 2.2 0.0 0.0 0.0 2.2
15 62.5* 0.0 0.0 93.3+ 16.7 0.0 0.0 82.2+

20 37.5 0.0 6.7 0.0 0.0 0.0 0.0 0.0
21 83.3+ 0.0 82.2* 0.0 50.0+ 0.0 35.6 0.0
22 83.3* 0.0 100.0+ 0.0 37.5 0.0 100.0+ 0.0
23 20.8 0.0 95.6* 0.0 0.0 0.0 46.7 0.0
24 33.3 0.0 4.4 0.0 0.0 0.0 0.0 0.0

31 12.5 4.2 2.2 2.2 4.2 0.0 0.0 0.0
32 0.0 16.7 77.8* 2.2 0.0 0.0 37.8 0.0
33 41.7 8.3 100.0+ 0.0 20.8 0.0 97.8+ 0.0
34 8.3 33.3 91.1+ 0.0 0.0 0.0 51.1+ 0.0
35 0.0 54.2 13.3 0.0 0.0 0.0 0.0 0.0

TABLE I: Percent of sequences where serial dependence is
significant (α = 0.05) at a given lag. Entries marked ‘*’,
‘+’, or ‘?’ have at least 50% of sequences showing significant
dependence; entries marked ‘+’ exhibit the same result for
both measures; entries marked ‘?’ have at least one sequences
showing significant dependence of the opposite sign as well.

at lags that are multiples of 11. Box plots and critical values
for the baseline and EMI-exposed datasets are shown in Fig-
ures 3c, 3d, 3e, and 3f. Our discussion focuses on dependence
exhibited by both measures.

The baseline data measures (figures 3c and 3e) reveal some
significant positive serial dependence at small lags, notably
lags 3, 6, 9, 11, and 12. Small, but still significant, negative
serial dependence is observed in the Cohen’s κ values at
lags 4, 5, and 7; however, many of the corresponding values
for κ⋆ are not significant. Above lag 12, serial dependence
rapidly vanishes in the baseline dataset aside from mild
positive dependence lag 21. In the EMI-exposed data, the only
significant positive serial dependence is at lags 11, 22, and 33;
in addition, some sequences have positive serial dependence
at lag 34. Both Cohen’s κ and κ⋆ show significant negative
serial dependence at lags 4, 5, and 7. In addition, significant
negative serial dependence is observed at lag 15.

These results are summarized in Table I. The entries marked
‘?’ deserve additional commentary: at lag 6, most EMI-
exposed sequences have negative serial dependence, but one
or two have positive serial dependence. This may indicate that
the EMI-exposed data is multimodal, with some sequences
exhibiting one mode of operation and others another, or it
may indicate that certain sequences do not exhibit interference.
From the entries marked ‘*’, we can see that the chosen serial
dependence measures agree more frequently on the baseline
dataset than on the EMI-exposed dataset. The modified κ⋆

measure universally reports serial dependence less or equally
frequently compared to Cohen’s κ.

At a minimum, we can say that there are measurable
differences between the baseline and EMI-exposed datasets.
Since the magnitudes of the serial dependences do not decrease

6

monotonically, we can conclude the underlying stochastic
processes do not have the Markov property. More analysis of
the underlying data is necessary before a complete explanation
of these differences can be offered. We hypothesize that during
“normal” operation, the host controller’s operation is charac-
terized by 3 state and 11 state loops. When exposed to EMI,
however, the 11-step processes become dominant; perhaps
this is due to built-in fault-recovery methods or due to some
unforeseen interaction between the experimental setup and the
host controller’s behavior. The negative serial dependences are
less dramatic and are likely a side effect of the 3 and 11 state
loops.

V. CLASSIFICATION

Having determined that our instrumentation observes differ-
ences in system operation depending on whether it is being
interfered with, we study whether these differences can be used
as indicators of EMI. The ultimate goals of this investigation
are threefold:

1) Identifying sequences of states for further root-cause
analysis

2) Detecting anomalies in real time on devices in the field
3) Recovering from interference with minimal interruptions

to system operation
This section discusses work towards these goals, focusing

on applying classification techniques to our experimental data.
Our approach should meet several criteria:

1) Sufficient granularity to identify anomalous sub-
sequences

2) Able to produce results from a stream of data, not just
finite-length sequences

We study classifiers which produce a stream of results as
well as sliding-window classifiers, both of which meet the
second criteria above. Input sequences are synthesized from
the experimental data as described in Section III-C to produce
data which contains both known uninterfered- and interfered-
with subsequences.

A. Classification Events

When developing classifiers for observed system operation,
we can choose to classify sequences of register snapshots,
or we can classify sequences of events derived from these
snapshots. One example of such a sequence of derived events
is pairs of snapshots (xi−1, xi), 1 < i ≤ n produced from a
window of n snapshots. Such a derived event allows classifiers
which otherwise ignore the order of states in a window to
capture some temporal dependences in the data. We refer
to such a pair of states as “lag 1” events; “lag 0” events
refer to the sequence of snapshots xi. This approach can be
extended with further “lookback” — a “lag 2” event is the pair
(xi−2, xi). In addition, we can classify over multiple lags: “lag
0 and 1” data contains an event for every observed state si as
well as an event for every observed state pair (xi−1, xi).

Since the space of possible events grows exponentially with
the number of snapshots used to derive an event, we do not
consider triplets (e.g., (xi−2, xi−1, xi)) of snapshots in this
work.

B. Classification Techniques

The first set of techniques we evaluated produce a stream
of results: a Hidden Markov Model (HMMs) and a Recurrent
Neural Network (RNN) Long Short Term Memory (LSTM)
classifier. In our HMM classifier, the hidden states correspond
to our classification labels: “Baseline” and “EMI-exposed”.
When trained, the HMM learns the expected marginal distri-
bution of the classification events in each category. Classifying
a sequence of events produces the most likely sequence of
classification labels — hidden states — given the observed
events. The LSTM approach incorporates a memory of pre-
vious events which is considered when classifying a new
event. While it seems a promising fit for our problem, we
lack sufficient training data to achieve passable classification
performance.

The second set of techniques, the sliding window classifiers,
all classify on the distribution of events from a window. This
choice keeps the input vectors to the classifier small — “lag
0” events require a 19 element vector — and independent
of window size, as well as eliminates any overfitting from
classifiers associating labels with a particular event’s absolute
position in the window.

We evaluated four sliding window classification techniques:
an Artificial Neural Network (ANN), a Support Vector Ma-
chine (SVM), a Random Forest Classifier (RFC), and a Gra-
dient Boosted Classifier (GBC). The ANN classifier features
two neuron layers: an input layer the size of the event space
and a single neuron sigmoidal output layer. This learns a
direct mapping from the event marginal distribution to a value
between 0 and 1, which is then compared against a cutoff to
determine the classification label applied. The SVM classifier
partitions the space of possible event marginal distributions
and assigns categories to regions of this space. Random forest
classifiers consist of a “forest” of decision trees; the majority
vote of the trees determines the classification label applied to
an input vector. Internal nodes in these trees pick a particular
element of the input vector and compare it to a cutoff to
determine which branch of the tree to continue the decision
process along; leaf nodes are classification labels. Gradient
boosted classifiers are a variation on RFCs wherein trees are
not trained independently; instead, each tree is selected to
minimize the error of the previous tree.

C. Training and Evaluation Approach

Training and evaluating a classifier intended to detect when
a system is experiencing interference requires a dataset of
sequences with known-baseline and known-interfered-with
subsequences. Recall that our dataset contains either wholly-
baseline or wholly-interfered-with sequences, but none that ex-
hibit both modes of operation in one sequence. We devised an
approach to synthesize sequences that are suitable for training
and evaluating the classifiers from this dataset. Sequences from
the baseline dataset and from the EMI-exposed dataset were
alternated in either BEBE or BEEB patterns, with B referring to
a baseline sequence and E an EMI-exposed sequence. These
synthesized sequences were then sliced into windows, with
the desired label (baseline or EMI-exposed) for the window

7

Lag Events

0 xi

0,1 xi, (xi−1, xi)
1 (xi−1, xi)
2 (xi−2, xi)
3 (xi−3, xi)
4 (xi−4, xi)

TABLE II: Events generated from dataset at each lag

determined by the label of the majority of its states. Synthe-
sized sequences could have unbalanced class representation
or have balanced class representation by oversampling short
baseline or EMI-exposed sequences until all subsequences
used to synthesize a sequence contained the same number
of snapshots. It is critical that balanced sequences be used
only for training and not for classifier evaluation. For each
synthetic dataset, 150 sequences were selected at random and
150 windows selected from each sequence for training and
evaluation.

In addition to classifier-specific hyperparameters, we have
several dataset-level hyperparameters:

• Synthesis pattern: BEBE or BEEB
• Balanced or unbalanced class representation
• Classification events, or “lags”
• Window length, for sliding-window classifiers
Two scores were selected to evaluate classifier performance:

the standard F1 score and Matthews Correlation Coefficient
(MCC). The MCC score is balanced: it takes into account true
and false positives and negatives, and produces informative
scores even when class representations are imbalanced, as they
are in our dataset. All classification results are averaged across
5-fold cross-validation.

D. Results

Classifier-specific hyperparameter selection is performed
using 5-fold cross-validation; the ideal hyperparameter settings
for each classifier are as follows:

ANN Trained for 100 epochs, learning rate of 0.001, Adam
optimization with binary cross entropy loss.

SVM Linear kernel, cost of 10,000.
RFC 100 trees, max tree depth of 12.
GBC 100 trees, max tree depth of 12, learning rate of 0.1.

We examine the variation in classifier performance due to
our dataset-specific hyperparameters. Classifiers were trained
for Lag 0; Lags 0,1; Lag 1; Lag 2; Lag 3; and Lag 4. Table II
reviews the events used by the classifier at these lags.

The effect of window size is shown in Figure 4a. Note that
for Lag 0,1, the window size used is double what is shown
on the axis label. Empirically, doubling events requires double
the window size to achieve equivalent performance to single-
lag classifiers; this is an inherent disadvantage to multiple-lag
classifiers. The reduced performance of the Lag 0 classifiers
compared to all others indicates that the sequential relationship
of state observations plays some role in accurately identifying
IEMI events. Optimal window size for each classifier is
determined by a one-sided Welch’s t-test with α = 0.05.

Metrics Hyperparameters

Classifier F1 MCC Accuracy Recall Window Size Lag

ANN 0.77 0.68 0.87 0.83 80 4
SVM 0.78 0.69 0.87 0.85 80 4
RFC 0.86 0.81* 0.92* 0.87 60 3
GBC 0.87* 0.81* 0.92* 0.92* 60 3

HMM 0.73 0.59 0.82 0.73 N/A 1

TABLE III: Best classifier configurations and performance.
Best values in each column are marked with *.

For the ANN and SVM classifiers, the best window size is
80 states (pANN < 0.01, pSVM = 0.01); the RFC and GBC
classifiers achieve best results with a window size of 60 states
(pRFC < 0.01, pGBC < 0.01). While peaks in the graph may
appear somewhat later, the increase in performance is not
statistically significant. Selecting for a smaller window size
reduces classifier memory requirements and produces results
more amenable to manual analysis.

Performance across different data synthesis approaches is
shown in Figure 4b. Again, the performance increase from
including sequence information (Lags > 0) can be seen, except
for in the HMM. HMM performance, on the other hand, seems
to be driven mostly by the number of observable states; fewer
observable states leads to better results.

Balancing the class representation in the training dataset
does not lead to an improvement in performance as determined
by a two-tailed Welch’s t-test for inequality, p > 0.25.
However, we do observe a difference between BEBE and
BEEB data (p < 0.01) for all but the HMM classifier. From
this, we can conclude that the classifiers struggle the most to
classify windows containing states from both B and E datasets.
The increase in performance on the BEEB datasets is due to
those datasets having only 2⁄3 of the mixed windows of the
BEBE datasets. The HMM is an exception to this trend, with
equivalent (p = 0.99) performance on either dataset.

The MCC and F1 scores agree across all results, indicating
good classifier performance on identifying both baseline and
EMI-exposed states.

Best classification results on the unbalanced BEBE dataset
are shown in Table III. Of these, the gradient boosted classifier
performed the best on this dataset.

VI. CONCLUSION

The goal of this project is to detect the effects of electromag-
netic interference in system peripherals. We focus on a USB
host controller, which is the device responsible for all USB
communication to and from a system. We capture sequences of
snapshots of a host controller’s control registers, both when the
system is operating as intended and when it is being exposed
to EMI. These sequences are processed into sequences of
categorical time-series data for analysis. We divide the data
into two datasets: baseline and EMI-exposed.

First, we analyzed various statistical properties of these
datasets. The variance, as measured by the Gini index and
extropy, differed between the two datasets. Furthermore, the
autocorrelation of the two datasets differed. At a minimum,

8

(a) Classifier performance by window size on the unbalanced BEBE synthetic dataset

(b) Classifier performance by synthesized dataset with a window size of 100 (200 for Lag 0,1)

Fig. 4: Comparison of classifier performance

these differences allow us to conclude that our instrumentation
is capable of detecting some effects of EMI.

Second, we investigated the ability of classifiers to identify
whether system operation was indicative of EMI exposure.
We devised a method for synthesizing a dataset for training
classifiers from our experimental data. Several classification
approaches were evaluated: hidden Markov models, neural
networks, support vector machines, random forest classifiers,
and gradient boosted classifiers. The gradient boosted random
forest classifier performed best on our sliding window classi-
fication task, reaching 92% accuracy, 92% recall, and 0.87 F1
score.

Future work will take several directions. Additional data
collection, correlated with external measures of EMI such as
EMI generator trigger events and device under test power
draw, will provide an expanded dataset with finer-grained
ground truth for analysis. Stochastic process modeling and
expanded statistical analysis will be investigated as an alterna-
tive approach to identifying operational anomalies. Anomalous
sequences will be identified by classification and modeling
techniques for further analysis of system operation, potentially
enabling root-cause analysis. Finally, this approach will be
expanded to additional system peripherals, leading to a whole-
system EMI instrumentation and detection method.

9

REFERENCES

[1] D. Pissoort, A. Degraeve, and K. Armstrong, “EMI risk management:
A necessity for safe and reliable electronic systems!” in 2015 IEEE
5th International Conference on Consumer Electronics - Berlin (ICCE-
Berlin), Sep. 2015, pp. 208–210.

[2] W. A. Radasky, “The role of electromagnetic shielding in dealing with
the threat of Intentional Electromagnetic Interference (IEMI),” in 2015
International Conference on Electromagnetics in Advanced Applications
(ICEAA), Sep. 2015, pp. 1145–1148.

[3] F. Sabath, “Classification of electromagnetic effects at system level,”
in Ultra-Wideband, Short Pulse Electromagnetics 9, F. Sabath, D. Giri,
F. Rachidi, and A. Kaelin, Eds. New York, NY: Springer, 2010, pp.
325–333.

[4] T. Liang, G. Spadacini, F. Grassi, and S. A. Pignari, “Worst-case
scenarios of radiated-susceptibility effects in a multiport system subject
to intentional electromagnetic interference,” IEEE Access, vol. 7, pp.
76 500–76 512, 2019.

[5] D. S. Guillette, T. J. Clarke, and C. Christodoulou, “Intentional elec-
tromagnetic irradiation of a microcontroller,” in 2019 International
Conference on Electromagnetics in Advanced Applications (ICEAA),
Sep. 2019, pp. 1214–1218.

[6] F. Burghardt and H. Garbe, “Effects of conducted interference on a
microcontroller based on IEC 62132-4 and IEC 62215-3,” in 2020
International Symposium on Electromagnetic Compatibility — EMC
EUROPE, Sep. 2020, pp. 1–5, iSSN: 2325-0364.

[7] J. Bai, Y. Shi, and G. Zhao, “Research on electromagnetic interference
of vehicle GPS navigation equipment,” in 2017 IEEE 5th International
Symposium on Electromagnetic Compatibility (EMC-Beijing), Oct. 2017,
pp. 1–5.

[8] M. Camp, J. Schmitz, and M. Jung, “Vulnerability and coupling be-
haviour of a TETRA communication system to electromagnetic fields,”
in 2015 IEEE International Symposium on Electromagnetic Compatibil-
ity (EMC), Aug. 2015, pp. 344–349.

[9] M. Lanzrath, C. Adami, B. Joerres, G. Lubkowski, M. Joester,
M. Suhrke, and T. Pusch, “HPEM vulnerability of smart grid substations
coupling paths into typical SCADA devices,” in 2017 International
Symposium on Electromagnetic Compatibility — EMC EUROPE, Sep.
2017, pp. 1–6.

[10] C. Mao, F. G. Canavero, Z. Cui, and D. Sun, “System-level vulnerability
assessment for EME: From fault tree analysis to bayesian networks—
part II: Illustration to microcontroller system,” IEEE Transactions on
Electromagnetic Compatibility, vol. 58, no. 1, pp. 188–196, Feb. 2016.

[11] Y. V. Parfenov, B. A. Titov, L. N. Zdoukhov, and W. A. Radasky, “About
the assessment of electronic device immunity to high power electromag-
netic pulses,” in 2015 7th Asia-Pacific Conference on Environmental
Electromagnetics (CEEM), Nov. 2015, pp. 428–431.

[12] K. Armstrong and W. A. Radasky, “Extending the normal immunity
tests to help prove functional safety,” in 2018 IEEE International
Symposium on Electromagnetic Compatibility and 2018 IEEE Asia-
Pacific Symposium on Electromagnetic Compatibility (EMC/APEMC),
May 2018, pp. 221–226.

[13] D. V. Giri, R. Hoad, and F. Sabath, “Implications of high-power electro-
magnetic (HPEM) environments on electronics,” IEEE Electromagnetic
Compatibility Magazine, vol. 9, no. 2, pp. 37–44, 2020.

[14] ——, High-power electromagnetic effects on electronic systems. Boston
London: Artech House, 2020.

[15] C. Kasmi, J. Lopes-Esteves, N. Picard, M. Renard, B. Beillard, E. Mar-
tinod, J. Andrieu, and M. Lalande, “Event logs generated by an operating
system running on a COTS computer during IEMI exposure,” IEEE
Transactions on Electromagnetic Compatibility, vol. 56, no. 6, pp. 1723–
1726, Dec. 2014.

[16] J. Lopes-Esteves, E. Cottais, and C. Kasmi, “Software instrumentation
of an unmanned aerial vehicle for HPEM effects detection,” in 2018 2nd
URSI Atlantic Radio Science Meeting (AT-RASC), May 2018, pp. 1–4.

[17] C. Kasmi, J. Lopes-Esteves, and M. Renard, “Autonomous electro-
magnetic attacks detection considering a COTS computer as a multi-
sensor system,” in 2014 XXXIth URSI General Assembly and Scientific
Symposium (URSI GASS), Aug. 2014, pp. 1–4.

[18] X. Liu, G. Maghlakelidze, J. Zhou, O. H. Izadi, L. Shen, M. Pom-
merenke, S. S. Ge, and D. Pommerenke, “Detection of ESD-induced soft

failures by analyzing Linux kernel function calls,” IEEE Transactions
on Device and Materials Reliability, vol. 20, no. 1, pp. 128–135, Mar.
2020.

[19] N. Jarus, A. Sabatini, P. Maheshwari, and S. S. Sarvestani, “Software-
based monitoring and analysis of a USB host controller subject to
electrostatic discharge,” in 2020 CSI/CPSSI International Symposium
on Real-Time and Embedded Systems and Technologies (RTEST), Jun.
2020, pp. 1–7.

[20] N. Jarus, A. Sabatini, P. Maheshwari, and S. Sedigh Sarvestani, “Detec-
tion, analysis, and prediction of the effects of electrostatic discharge
on a USB host controller,” IEEE Transactions on Electromagnetic
Compatibility, under review.

[21] Y. Kitagawa, T. Ishigooka, and T. Azumi, “Anomaly prediction based on
machine learning for memory-constrained devices,” IEICE Transactions
on Information and Systems, vol. E102.D, no. 9, pp. 1797–1807, Sep.
2019.

[22] Y. Li, W. Xue, T. Wu, H. Wang, B. Zhou, S. Aziz, and Y. He, “Intru-
sion detection of cyber physical energy system based on multivariate
ensemble classification,” Energy, p. 119505, Dec. 2020.

[23] T. Zoppi, A. Ceccarelli, and A. Bondavalli, “MADneSs: a Multi-layer
Anomaly Detection Framework for Complex Dynamic Systems,” IEEE
Transactions on Dependable and Secure Computing, pp. 1–1, 2019.

[24] M. Alam, S. Bhattacharya, and D. Mukhopadhyay, “Victims can be
saviors: A machine learning-based detection for micro-architectural side-
channel attacks,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 17, no. 2, pp. 14:1–14:31, Jan. 2021.

[25] Intel Corporation, “Enhanced host controller interface specification for
universal serial bus,” 2001.

[26] O. H. Izadi, R. K. Frazier, N. Altunyurt, S. Sedigh Sarvestani, D. Pom-
merenke, and C. Hwang, “A new tunable damped sine-like waveform
generator for IEMI applications,” in 2020 IEEE International Symposium
on Electromagnetic Compatibility Signal/Power Integrity (EMCSI), Jul.
2020, pp. 282–286.

[27] C. H. Weiß, An introduction to discrete-valued time series. Hoboken,
NJ: John Wiley & Sons, 2017.

[28] F. Lad, G. Sanfilippo, and G. Agrò, “Extropy: Complementary dual of
Entropy,” Statistical Science, vol. 30, no. 1, pp. 40–58, Feb. 2015.

[29] C. H. Weiß, “Measures of dispersion and serial dependence in categor-
ical time series,” Econometrics, vol. 7, no. 2, p. 17, Jun. 2019.

10

APPENDIX
OBSERVED STATE SPACE

Registers

State Command Config’d
Flag

Interrupt
Enable Status TX Fill

Tuning Mode Mode
Extended

s1 0x10005 0x1 0x37 0x0000 0x0 0x10005 0x10005
s2 0x10005 0x1 0x37 0x0008 0x0 0x10005 0x10005
s3 0x10025 0x1 0x37 0x8000 0x0 0x10025 0x10025
s4 0x10025 0x1 0x37 0x8001 0x0 0x10025 0x10025
s5 0x10025 0x1 0x37 0x8008 0x0 0x10025 0x10025
s6 0x10025 0x1 0x37 0x8009 0x0 0x10025 0x10025
s7 0x10025 0x1 0x37 0x8020 0x0 0x10025 0x10025
s8 0x10025 0x1 0x37 0x8021 0x0 0x10025 0x10025
s9 0x10025 0x1 0x37 0x8028 0x0 0x10025 0x10025
s10 0x10025 0x1 0x37 0xA000 0x0 0x10025 0x10025
s11 0x10025 0x1 0x37 0xA001 0x0 0x10025 0x10025
s12 0x10025 0x1 0x37 0xA008 0x0 0x10025 0x10025
s13 0x10025 0x1 0x37 0xA009 0x0 0x10025 0x10025
s14 0x10025 0x1 0x37 0xA020 0x0 0x10025 0x10025
s15 0x10025 0x1 0x37 0xA021 0x0 0x10025 0x10025
s16 0x10065 0x1 0x37 0x8000 0x0 0x10025 0x10025
s17 0x10065 0x1 0x37 0x8000 0x0 0x10065 0x10065
s18 0x10065 0x1 0x37 0xA000 0x0 0x10025 0x10025
s19 0x10065 0x1 0x37 0xA020 0x0 0x10025 0x10025

TABLE IV: State space and register values from corresponding
snapshot

	Introduction
	Background and Related Literature
	Observation
	Device & Instrumentation
	Experimental Setup
	Collected Data

	Analysis
	Variance & Dispersion
	Autocorrelation & Serial Dependence

	Classification
	Classification Events
	Classification Techniques
	Training and Evaluation Approach
	Results

	Conclusion
	Appendix: Observed State Space

