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The study of cyber-physical systems (CPSs) is a multidisciplinary research area incorporating elements from
statistics, systems management, computer science, and electrical, computer, and civil engineering. Due to
their heterogeneous nature and tight coupling between the cyber and physical domains, these complex sys-
tems pose difficult problems not seen in traditional infrastructure and computer networks. As such, new
modeling and design techniques must be created, and existing methods adapted, to meet these challenges.
When modeling and designing complex critical systems such as CPSs, one must ensure they both perform
adequately and are capable of providing dependable, safe, and secure service. In this paper, we survey recent
literature on modeling and design of CPSs with focus on the critical attributes of dependability, safety, and,
security. Literature related to each of these non-functional attributes is introduced, as are techniques for CPS
modeling, design, and management that aim to achieve these critical attributes.The research presented in this
survey comprises both studies of a general nature, with contributions applicable to a variety of CPS domains,
and case studies from a number of specific domains, including smart grids, water distribution networks, and
intelligent transportation systems. We conclude the survey by summarizing open research questions related
to modeling and design of dependable and secure CPSs.
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1 DEFINITIONS AND CHALLENGES
1.1 What Is a Cyber-Physical System?
The rise of large-scale cyber-physical systems (CPSs) has prompted the development of modeling
and design techniques that encompass the behavior of both physical and cyber components. This
paper surveys a number of these techniques and provides case studies inmany application domains.
To guide our discussion, we must first understand the defining features of cyber-physical systems
and the challenges that cyber-physical system modeling and design must rise to meet.

A multitude of descriptions of ‘cyber-physical systems’ have been proposed. We find that most
definitions focus on two system aspects: scale and integration between cyber and physical com-
ponents. Wang et al. [212] define CPSs as large-scale interconnected systems of heterogeneous
components that integrate computation with physical processes. Shi et al. [189] articulate several
features CPSs must have, including large-scale networks and tight integration between cyber and
physical elements. They must be dependable and able to adapt to the environment dynamically.
According to NIST [162], the characteristics of a CPS must include cyber, engineered, and human
elements, control loops, and scalable networking.

Wolf [213] argues that a CPS can mean the traditional computer-controlled machine, but large
control systems that stretch across an entire country, such as one controlling a power grid, are the
end goal of CPSs.

Lee [119] states that CPSs are the integration of computation and physical processes, while Tan
et al. [197] define a CPS as a collection of cyber systems that collaborate over a network to monitor
and control physical systems. Macana et al. [139] state that CPSs are a combination of components
from the cyber and physical worlds where the cyber components monitor and control the physical.
Bonakdarpour [24] considers CPSs to be the integration of embedded real-time systems with large
collections of sensors and actuators in hostile physical environments. Since CPSs evolved from
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the field of real-time and embedded systems, Lee [120], Wood and Stankovic [215] argue that
embedded systems and wireless sensor networks (WSNs) can in some cases be considered CPSs.
Both CPSs and some WSNs have a computational component that includes both hardware and
software, and a physical component that is being controlled by an embedded system or WSN.

Throughout this paper we will implicitly define CPSs by studying their applications, challenges,
and important attributes. However, we can also provide our explicit definition, which incorporates
elements from the above definitions.

A CPS is a system that has two primary subsystems: a physical infrastructure that performs cer-
tain physical processes, and a cyber infrastructure which enhances some attribute of the operation
of the physical process using computing, communication, and control. The level of coupling be-
tween the two infrastructures can vary from system to system, and the scale of the system can vary
according to the application, but a reasonable degree of scale and complexity is required to form
a CPS. We take the view that tight integration of the cyber and physical infrastructures differenti-
ates CPSs from real-time embedded systems and sensor-actuator networks. Furthermore, wireless
sensor networks can only be considered CPSs when the sensing is coupled with communication
and control.

1.2 Key Challenges
The large-scale and tightly-coupled nature of CPSs presents many challenges that must be taken
into consideration when developing a CPS. In this section, we enumerate the main challenges
set forth thus far in the literature in an effort to guide future research towards addressing those
challenges.

1.2.1 Interdependence. Interdependence amongst components and operations is one of the most
important CPS design challenges because it is impossible to design each component in isolation [84,
95, 119, 187]. Therefore, all key challenges must be targeted simultaneously when designing a
CPS. We classify interdependencies as being among the components of the physical infrastructure,
among the cyber infrastructure components, and between the two infrastructures [142, 167].

Methods for addressing design challenges include formal verification methods [29], emulation
and simulation techniques [71], analyticalmodeling [119], and using cross-layer design techniques [212].

1.2.2 Dependability and Fault Tolerance. Dependability and fault tolerance are crucial require-
ments for any CPS [136, 187, 212]. While incorporating cyber control elements into a physical
network can improve the physical network’s ability to respond to component failure and degrada-
tion, it is challenging to add additional components to a system in a manner that increases overall
system dependability [207]. Sophisticated system models are necessary to provide quantitative
measures of aspects of CPS dependability. CPSs will not see widespread adoption in certain appli-
cations, such as traffic control, automotive safety, and health care, unless they can proven to be
reliable and predictable [119].

1.2.3 Security. In order for a CPS to operate properly, it must be designed with security in mind.
While adding communication and control to a critical infrastructure system is likely to improve
its operation, it also adds points of vulnerability to the system. Malicious exploitation of such
vulnerabilities can lead to disastrous consequences, including terrorist attacks [136, 149, 187]. Un-
derstanding the security risks and determining the correct action to minimize those risks requires
a deep understanding of the semantics of the system operation.

1.2.4 Real-Time Aspects. CPSs must handle sensing, processing, and actuation in real time. The
physical infrastructure often imposes some time constraints on the cyber infrastructure, requiring
it to respond to changes in the physical phenomena within a fixed time period. In general-purpose
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software, the time it takes to complete a task measures the performance of the system, but has
no effect on its correctness. In a CPS, correctness depends on the system’s ability to perform a
task within a specified time [49]. While solutions to system timing problems may exist for many
subsystems in a CPS, the heterogeneous nature of CPSs requires a unified theory that addresses
the challenges imposed by this heterogeneity [212].

1.2.5 Communication. One element of designing CPSs is developing communication protocols
that enable application components to communicate predictably. Without real-time data, it is im-
possible to build cyber infrastructure that is tightly coupled to a physical infrastructure; therefore,
communication is an essential element to constructing every CPS. Chipara and Lu [37] describe
the challenges in communication, which include support for high data rates, real-time communica-
tion, responding to changes in priority, sensor mobility, and reliable data transmission. In addition
to these concerns, Fan et al. [61] outline the importance of scaling to large numbers of network
nodes and interoperating between devices from different manufacturers. Sha et al. [187] note that
the interactions among different communications protocols used in a system must be analyzed to
prevent adverse behavior. Finally, communication must be secure and must ensure that peoples’
privacy is not violated. All these challenges need to be addressed in any implementation of a CPS,
and need to be tailored to the specific requirement of the physical infrastructure under control.

1.3 Structure of This Survey
In this paper, we discuss CPS-specific modeling and design techniques that address these key chal-
lenges as outlined in Fig. 1. While functional attributes, such as system performance, are domain-
dependent, we can discuss nonfunctional attributes, including dependability and security, in a
domain-agnostic fashion. We define measures for many aspects of nonfunctional CPS behavior in
section 2, as these guide the development of many modeling and design techniques. Once these
attributes have been introduced, we discuss modeling techniques that capture these attributes in
complex systems in section 3. In both the modeling and design sections, we discuss generic ap-
proaches along with case studies in many application domains. We conclude by identifying open
questions and essential research tasks.

2 NON-FUNCTIONAL ATTRIBUTES
Two types of attributes characterize systems: functional and non-functional.The functional require-
ments of a CPS describe the operational and performance requirements for the cyber and physical
infrastructure of that system. Security, interoperability, and reliability, which drive the design of
all CPS infrastructures, are examples of non-functional attributes.

2.1 Dependability
Dependability is the ability of a system to provide a justifiably trustable level of service [10]. It
describes the behavior of a system over its lifetime: its ability to deliver services and to avoid
and recover from faults. Avizienis et al. [10] provide a taxonomy of dependability aspects which
we summarise here. Dependability is a broad concept that encompasses many metrics, including
availability, reliability, safety, integrity, and maintainability. Metrics may be qualitative, describing
principles of system design and behavior, or quantitative, providing a means to compare different
systems’ operation. A particular challenge to CPS dependability analysis is unifying definitions and
metrics from the various disciplines involved; Kaitovic et al. [106] does this for cyber dependability
and power grid dependability definitions and metrics.

In order to define various metrics, we must first understand the types of system events that may
be measured. We take these definitions from the work of Parhami [170]. At the lowest abstraction
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Fig. 1. Organization of This Survey

level is the system component, which may experience a defect. A fault occurs when a component
(whether defective or simply improperly designed) ceases to perform its function perfectly. Faults
are undetectable by system monitoring, but may be found through thorough examination. An er-
ror occurs when one or more faults threaten to compromise system performance. A failure occurs
when the system is unable to perform as intended; that is, the service the system provides is de-
graded. Failures may be localized to one area of a system (such as a power grid not serving some
customers); a complete failure causes the system to cease functioning entirely.

System dependability was initially defined in terms of reliability, availability, and robustness.
These metrics take a binary view of the system: either it is functional or it has entirely failed. How-
ever, these metrics are considered to be too pessimistic to accurately model large-scale systems
and thus cyber-physical systems. For example, a nation-wide power grid may experience a service
outage in one area, but still be providing service to other areas. This led to the development of
more granular metrics, such as performability, resilience, and survivability, that take the level of
service a system provides into consideration. Dependability metrics also differ based on which
portion of the system lifecycle they measure. As such, no one metric can claim to entirely cap-
ture system dependability; several models must be used to judge the trustworthiness of a system’s
service. Figure 2 shows the portions of system lifetime modeled by these metrics.

1While both safety and security are important characteristics of CPSes, we focus on dependability-related CPS attributes
and direct the reader to other surveys on safety [23] and security [98, 171].
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Fig. 2. Dependability metrics and the portions of the system lifecycle they measure. For metrics with dashed
lines,𝑀 (𝑡) is either Functional or Failed; for metrics with dash-dot lines,𝑀 (𝑡) is a continuous measure of
system functionality.

Many quantitative dependability evaluation approaches rely on computing a performance met-
ric for a system where some components have failed. Galvan and Agarwal [73] highlights sev-
eral methodological concerns with this approach. First, simply computing the expected value of
the performance metric over all failure cases ignores critical information about the variance and
peakedness of the distribution as well as whether certain components have a disproportionate
effect on the metric. Second, as the number of possible failure cases combinatorially explodes as
the number of failed components increases, the performance metric distribution must be assigned
a confidence interval. The authors discuss how this may be done, viewing the uncertainty in the
estimated performance metric distribution as stemming from the random sampling of all possible
failure cases. Finally, comparing results from real-world systems to results on randomly generated
graphs can indicate whether a system’s dependability is inherent to any complex system of that
size or whether its specific connectivity impedes its dependability.

2.1.1 Reliability and Performability. Reliability and performability are concerned with system be-
havior before a failure. Reliability is the ability of an item to perform a required function under
given conditions for a given time interval [202]. However, once the system fails, reliability does
not consider partial system functionality or the system’s ability to recover; thus, it is a binary
measure of continuous operation. In other words, reliability considers every system failure to be
a complete failure. Reliability is mathematically modeled using probability. Let 𝑋 be a continuous
random variable representing the system lifetime beginning at the time origin and ending at the
instant of system failure. A system’s reliability at time 𝑡 is thus

𝑅(𝑡) = 𝑃𝑟 {𝑋 > 𝑡}. (1)
If we let 𝐹 (𝑡) denote the cumulative distribution function (CDF) of 𝑋 , reliability becomes

𝑅(𝑡) = 1 − 𝐹 (𝑡). (2)
Or, in other words, the reliability of a system is the probability of it not failing within some interval
[0, 𝑡]. The major challenge of reliability modeling is determining the distribution on 𝑋 . For small
systems, this may be able to be determined through empirical testing, but larger systems require
more sophisticated approaches. Often, large systems are divided into small components; the whole
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system’s reliability is then defined as some function of the individual components’ reliabilities.
Numerous approaches to defining these functions have been proposed, each varying in the exact
failure scenarios it can consider, the complexity of systems it can be practically applied to, and its
ability to capture system-wide effects such as operator control actions and system maintenance.

One of the earliest reliability analysis tools is the fault tree [124]. Fault trees encode the con-
nections between system components using logic gates. Different types of gates represent the
different effects the failure of a component can have on the system. For instance, an AND gate
indicates that both subsystems it relates must be functional; this would apply to a system of two
components connected in series, among others. An OR gate would model a system with two par-
allel components that requires both to experience a fault before the system fails. The tree of gates
can be analyzed using either analytical or numerical methods [15, 124]. They may also be con-
verted to reliability block diagrams for analysis [141]. While fault trees are intuitive, it is difficult
to capture some types of component interdependence with them (but see [153]). Thus, modeling
some complex systems with fault trees can be labor-intensive.

Alves et al. [7] apply fault tree modeling to a power grid with traditional generators, wind
and solar generators, and battery storage. The supplies each load depends on are determined by
exhaustively checking which loads fail when certain supplies are failed. Path connectivity between
a load and the supplies it depends on is cast as a 𝑘-terminal reliability problem and solved via a
DFS algorithm. This information is combined into boolean expressions and incorporated into a
fault tree for each load. Load fault trees are then combined into a system fault tree based on which
configurations of loads must be functional for the system to be considered functional. The authors
use SHARPE [206] to evaluate the fault tree. This formulation does not take into consideration the
propagation of failures through a system or the capacities of transmission lines when determining
path connectivity.

Reliability Block Diagrams (RBDs) [154] provide another visual means of modeling reliability.
Instead of the logic gates of the fault tree, system components are represented as switches in an
electrical circuit. If the circuit remains complete between input and output, the system remains
functional. As such, RBDs can be used to analyze the probability of the system being functional
and thus the system’s reliability. Additional analysis can be performed by converting the RBD to
a fault tree and applying appropriate analysis techniques [141]. In particular, boolean algebra can
be used to reduce the complexity of the RBD and thus simplify analysis [19].

A system reliability model that captures propagated failures is presented in [153]. The authors
use a Multi-valued Decision Diagram (MDD), which is a graph-based formalism that represents
the logical relationships between multi-valued variables. MDDs resemble logic diagrams, but the
gates operate on variables which may take on more than two values. Additional gates, such as
functional dependency gates, can capture component dependencies that are not representable us-
ing traditional logic gates. The authors propose a new gate to capture propagated failures. This
gate represents the causal link between one component failing and that failure propagating to
other components. The relationship may be asymmetric; it is possible to capture failure that prop-
agates from one component to another, but not vice versa. The authors propose an algorithm for
calculating system reliability based on an MDD and component importance measures based on
the reliability analysis.

Markov chains have been applied to reliability modeling in numerous ways [165]. A Markov
chain consists of states in which a systemmay be and transitions among those states that are taken
with some probability. The Markov assumption constrains these probabilities: we assume that the
probability of transitioning to a given state depends only on the state the system is currently in.
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Formally, if we let 𝑋𝑛 be a random variable denoting the state of the system at time step 𝑛,

𝑃{𝑋𝑛 = 𝑥𝑛 |𝑋𝑛−1 = 𝑥𝑛−1, . . . , 𝑋1 = 𝑥1} = 𝑃{𝑋𝑛 = 𝑥𝑛 |𝑋𝑛−1 = 𝑥𝑛−1}. (3)

Kaegi et al. [105] demonstrate how to use agent-basedmodeling for reliability analysis. A system
where each component may be in a functional or failed state is modeled using a Markov chain.
Operators that can repair failed components are modeled as agents, which allows the authors to
model complex repair strategies and exhibit non-Markovian behavior. de C. Gatti et al. [48] present
a method for identifying the agent most critical to operation of the system. This identification is
carried out by analyzing interactions among agents. Once identified, services associated critical
agents can be duplicated to improve availability and reliability.

One notable technique, the Markov Imbeddable Structure (MIS) method, is presented in [25, 35].
Each state in the Markov chain represents one of the possible permutations of system component
failure.The states that result in overall system failure are identified. Transitions between states take
place with probability dependent on the reliability of individual components. System reliability is
then defined as the likelihood of being in a functional system state after taking one step through the
Markov chain for each component in the system.TheMIS technique thus models system reliability
as a function of individual component reliability.

System reliability can be modeled using the Markov imbeddable structure (MIS) technique [25,
35]. This technique derives a metric for system reliability from component-level reliability mea-
sures. Each component can be in either a functional or a failed state. The combinations of compo-
nent state that result in a failed system are identified. Then, a Markov chain is constructed where
transitions between system states occur when components fail. Analysis of the Markov chain re-
veals the probability that the system remains functional after a certain number of component
failures. Faza et al. [64, 66] use this technique to compare changes to cyber control algorithms
and cyber device placement in a CPS, as well as the effect of physical faults on the control system.
The authors extend their work in [65] by providing methods to reduce model complexity, mak-
ing the modeling of real-world CPSs feasible with the MIS technique. Marashi et al. [144] apply
this technique to compare the effects of cyber and physical component failures on overall system
reliability.

Faza et al. [64] develop a method for modeling the reliability of specific power grid topologies;
specifically, bipartite power graphs. They consider the effect of the failure of each critical com-
ponent on system-level functionality; i.e., they enumerate all combinations of component-level
failures and determine whether each combination leaves the system functional or failed. This en-
ables calculation of system-level reliability from component-level reliability estimates. The model
is applied both to a conventional power grid lacking intelligent control, and to a smart grid forti-
fied with UPFCs. In [65], the authors extend this to more complicated systems, studying methods
for reducing model complexity. State space explosion is an obvious impediment to scalability of
this model, as 2𝑛 system states result from 𝑛 components. The authors develop a technique for
aggregating components, reducing 𝑛 by a factor of up to 10 in some cases. Faza et al. [66] utilize
simulation and fault injection to investigate how intelligent control can prevent cascading fail-
ures in the IEEE-118 bus system. The authors consider various types of UPFC failures, including
malicious tampering and control software faults, and determine the effect these failures have on
system reliability. Finally, in Faza et al. [63] the authors describe the result of fault injection into
the software controlling UPFCs, elucidating how such devices might fail in practice. Their simula-
tion results show that, in certain cases, software failures in UPFCs can cause cascading failure in
otherwise functional power grids, underscoring the importance of including software in system
reliability models.
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Marashi and Sedigh Sarvestani [143] study how control and communication techniques affect
the reliability of smart power grids. Using the MIS technique, they derive a probabilistic equation
for system reliability that includes transmission lines, FACTS devices, communication paths both
wired and wireless, cyber sensors for power quality, control algorithms, and human operators.

Stochastic Petri Nets (SPNs) are another tool used extensively for modeling reliability. A Petri
net is a bipartite directed graph where the set of nodes consists of two disjoint sets: places and
transitions [140]. Directed arcs connect places to transitions and transitions to places. Each place
contains a non-negative number of tokens. The state of the system, referred to as the marking,
is dictated by the distribution of tokens in various places within the Petri net. The change in the
Petri net’s marking is controlled the firing condition of the transitions. For instance, a transition
may fire once each place that has an arc to that transition contains a token. When a transition
fires, tokens are removed from places connected to the transition by an input arc and are added to
places connected to the transition by an output arc. The transitions in an SPN utilize exponentially
distributed firing times.

SPNs provide a graphical model of system behavior similar to Markov chains. For analysis, they
can be reduced to continuous-timeMarkov chains (CTMCs) to obtain a steady-state representation
of reliability [140]. SPNs provide a more concise representation of a system than traditional CTMC
modeling, as each marking of the Petri net corresponds to a state in a CTMC. Extensions of SPNs
have been proposed for modeling more complex systems, including high-level smart grid control
centers [222] and subcomponents such as multi-source power systems [108].

Tien and Der Kiureghian [204] demonstrate an approach to modeling the reliability of large-
scale systems with Bayesian networks. A Bayesian network [160] is a quantitative system model
based on a directed acyclic graph where each node is a random variable that represents the state of
one system component and each edge represents a causal relationship between two components’
states. Bayes’ Theorem is applied to the graph structure to determine the probability of unknown
component states given the knowledge of some component states. For instance, one could com-
pute the probability of system failure based on the failure of a component, or the probability that
a certain component has failed given that another component has failed. The authors propose an
algorithm for compressing Bayesian networks for large systems by combining interrelated com-
ponents into clusters that can be modeled by a single random variable. Furthermore, they develop
two algorithms for exactly inferring the probability distributions of the random variables in the
network.

Zhang et al. [227] present a graph-based model of cyber-physical systems and define a reliability
metric based on graph metrics. The nodes of the graph are divided into two disjoint subsets that
represent the cyber and physical elements of the system. A node is considered ‘functional’ provided
that it has at least one link to a cyber node and one link to a physical node. A failure is initiated
by removing some nodes from the graph. The failure then cascades if removing those nodes cause
other nodes to be considered to have failed based on the functionality criterion.The authors define
𝑘-reliability to mean that the largest connected component of the graph after a cascading failure
contains at least 𝑘 nodes. Necessarily, this component must contain at least 2 physical nodes and
at least 2 cyber nodes. They use this metric to determine the reliability of systems with randomly
allocated links and with links allocated following a regular pattern.

Carreras et al. [33] study the impact of heterogeneity on power grid reliability. Most real-world
grids follow a so-called “pearls on a string” topology, consisting of homogeneous distribution net-
works (“pearls”) connected by few linking lines (“string”). These linking lines may not have the
same reliability as the intra-network lines, leading to heterogeneity in the network; imbalance in
power generation and demand inside each distribution network adds another dimension of het-
erogeneity. The authors generate several grids following this architecture and simulate failures
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in them. They find that for medium-sized blackouts, having more reliable linking lines improves
system resilience, but for large-scale blackouts, the opposite is true as failed linking lines more
effectively isolate the blackout. This work highlights the important role that automated switches
can play in controlling blackouts.

Ahangar et al. [3] compare the effect of various control network topologies on the resilience of a
power grid.The physical system ismodeled using a component state-based approach similar toMIS
where the probability of each state is determined by the availability of the functioning components
and the unavailability of the non-functioning components. The authors use the Expected Energy
Not Supplied (EENS) metric to evaluate the reliability of the system. In a case study on a 20 kV
power distribution grid in Iran, the authors find a 30% difference in EENS between a power grid
where the cyber network is perfect and one where the cyber network may fail. Furthermore, using
a mesh control network topology improves EENS 50% over a bus network topology.

Hariri et al. [89] incorporate renewable energy sources and distributed grid storage devices as
well as electric vehicle charging demand into their reliability analysis of a smart grid. Due to the
complexity of combining the various reliability and energy supply/demand probability distribu-
tions, the authors use Monte Carlo simulation to compute the EENS of the IEEE-33 bus system.
They find that distributed generation and storage provide a significant increase in the grid’s abil-
ity to meet voltage and power flow constraints, especially when the grid is cut off from one or more
traditional generators. The simulation approach produces results within 0.4% of an exact simula-
tion, but with significantly reduced compute time that allows this technique to scale to much larger
systems.

[77] provide a survey of water distribution network (WDN) reliability measures. The authors
discuss the various failure modes of WDNs, including pipe failure, pump failure, and reservoir
exhasution.Many reliability analyses of pipe failures consider the impact of individual pipe failures.
However, depending on the location of shutoff valves, an area larger than the one serviced by the
failed pipe may need to be shut down to perform repairs. Thus, some reliability analyses consider
segment reliability, rather than individual pipe reliability. The survey also includes a number of
performance metrics that cover the behavior of WDNs from several aspects, including efficiency,
throughput, cost, and water quality.

The groundwork for analyzing the complete reliability of a water distribution network is laid
in [220]. Until this point, reliability analysis had focused on either mechanical failure of network
components or the inability of the network to meet demand. First, the performance of various net-
work configurations is determined using a probabilistic hydraulic model. Second, the likelihood of
each network configuration is determined and combined with the performance information from
the first stage to determine overall system reliability. While the derived solution is only approxi-
mate, the modeling technique is applicable to real-world WDNs.

Dasic and Djordjevic [47] develop probabilistic reliability models for WDNs. They consider two
perspectives on reliability: the probability of node or pipe failure, and the probability that flow and
pressure requirements will be met at every node. Both network-wide and single-node reliability
are considered, since single-node reliability can be of interest when that node is important (e.g. a
hospital). To calculate resilience, the authors propose several network decomposition techniques,
simplifying model evaluation. Finally, they develop a genetic algorithm for designing systems with
a fixed reliability while minimizing cost.

Agrawal et al. [2] develop a method for converting an arbitrary WDN topology to one that can
withstand the failure of any single pipe without a loss in delivered service to any customer. In
their linear programming approach, the objective is to minimize the cost of adding redundancy to
the network while maximizing the redundancy gained. The proposed solution relies on iteratively
identifying the pipe with the lowest reliability, and either duplicating or increasing the capacity
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of this pipe. The algorithm terminates when failure of any single pipe does not result in system
failure.

Orazio [166] build a reliability model of a WDN that incorporates a model of the hydraulic
behavior of the network.This model also incorporates the failure of isolation valves. If an isolation
valve fails, significant portions of the network may have to be shut off in order to isolate a failed
pipe segment. In small networks, there is an increased chance that shutting off one segment of
the network may unintentionally disconnect others; however, larger networks are more likely to
have redundant supply paths, reducing this concern for system reliability. The authors develop a
pareto-optimal algorithm for planning the location of shut-off valves and demonstrate it in a case
study on a WDN in Italy.

Reliability cannot capture the degradation of a system’s performance due to failures; therefore,
it cannot be used to model non-catastrophic failures where the system maintains partial function-
ality. Meyer [150] introduces performability, which simultaneously captures the performance and
reliability of a system. Performability, like reliability, does not consider system behavior after com-
plete failure; it is a measure of system capability before failure. System capability quantifies the
extent users can expect to benefit from a system given that it is in a specific state. Iyer et al. [100]
discuss developing performability models of fault-tolerant systems that use a capability function,
𝑀 (𝑡), to relate the state of a system at time 𝑡 to the overall system performance level.

The performability of a system from the time origin 𝑡0 to time 𝑡 is given by Equation 4:

𝑃𝑒𝑟 𝑓 𝑠𝑦𝑠 (𝑡) =
∫ 𝑡

𝑡0

𝑀 (𝑥) d𝑥 (4)

where 𝑀 (𝑡) is the reward function associated with performance per unit time and 𝑡 is the mis-
sion time of the system. The mission time of the system is the duration over which the system
is expected to be operational. Performability is focused on mission time and becomes difficult to
calculate if repairs occur during operation since the mission time can become unbounded. Ciardo
et al. [39], Smith et al. [192] present Markov reward models—Markov chains that earn a reward
dependent on the state the system is in—for evaluating CPS performability.

Reliability and performability are useful for evaluating systems that are initially in a perfect
functional state, but fail to capture repairs after complete failure and thus long-term system oper-
ation.

2.1.2 Availability, Maintainability, Resilience. As time goes on, it is inevitable that any complex
system will fail. The behavior of a system after such a complete failure is not described by reliabil-
ity; we must capture this behavior with different attributes. The simplest of these is availability:
whether or not the system is able to provide correct service at a given time [111]. Like reliability,
availability views the system as either completely functional or completely failed.

Effectively, system availability depends on two mutually exclusive events: either the system has
not failed before time 𝑡 , or the system was last repaired at time 𝑥 and has not failed between time 𝑥
and 𝑡 . If we let𝑚(𝑡) be the average number of repairs before time 𝑡 and 𝑑 (𝑡) = d𝑚 (𝑡 )

d𝑡 be the repair
density, the probability of a system being available can be defined as shown in Equation 5.

𝐴(𝑡) = 𝑅(𝑡) +
∫ 𝑡

𝑡0

𝑅(𝑡 − 𝑥)𝑑 (𝑥) d𝑥 (5)

Goyal et al. [81] develop probabilistic models for steady-state and transient availability, as well
as availability over a specified interval. These models are similar to Markovian reliability models,
but with added terms for system repair time. They also discuss the difficulties of modeling all
types of repair and choosing statistical distributions for repair time. Dyer [54] develops additional
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Markovian availability models with more complex state transition rates, as well as a method of
approximating model solutions using Poisson processes. Due to its binary view of system state,
availability is usually not directly studied within the field of CPSs. Instead, most studies focus on
more granular metrics such as system maintainability or resilience.

Maintainability, the ability of a system to be modified or repaired [10], describes the ability
of a system to be restored to functionality after a failure. To be maintainable, a system must be
designed to undergo preventativemaintenance and to easily be repaired after a failure; thus, system
maintainability is related to system availability. System maintainability is described by system
attributes and operating procedures; as such, it is a qualitative measure of dependability.

Ruiz-Arenas et al. [184] develop nine principles for building maintainable CPSs, drawing on
principles from the field of linear complex systems. A maintainable CPS should include fault mon-
itoring that can alert operators when a component requires maintenance. Furthermore, the system
must be modeled to predict how it will fail. This information can then be used to both improve the
design and increase the effectiveness of preventativemaintenance. Preventativemaintenancemust
be scheduled on a regular basis. Finally, when performing maintenance after a failure, operators
must work to isolate faults to prevent them from cascading. These principles form a foundation
for designing and maintaining highly available CPSs.

Sheu et al. [188] develop a stochastic model of system repair that includes delayed repairs for
non-critical failures, immediate repairs for critical failures, and replacement of hardware as it
ages. Component degradation and events caused by degraded components are assumed to be non-
deterministic; each type of fault has its own probability distribution.Themodel captures imperfect
repair; that is, repaired components may not return to ‘good-as-new’ condition.This technique can
be used to determine the effectiveness of maintainability attributes or to judge the resilience of a
system.

Resilience takes a more detailed quantitative view of system availability, much as performabil-
ity does with reliability. Avizienis et al. [10] mention resilience as a synonym for fault tolerance.
More specifically, resilience is defined as the ability of the system to bounce back from failure [93].
Ouyang and Dueñas-Osorio [168] expand this definition to include the ability of a system to resist
different possible hazards, absorb the initial damage, and recover to normal operation. Mathemat-
ically, resilience is defined in Equation 6.

Λ(𝑡) = 𝑀 (𝑡)
𝑀 (𝑡0)

(6)

As with performability, all quantitative resilience measures rely on some measure 𝑀 (𝑡) of sys-
tem functionality at time 𝑡 , alternatively known as a capability function or a figure ofmerit(FOM) [14,
93].

NIAC [158] qualitatively expands on this definition, emphasizing certain abilities a resilient sys-
tem must have. Infrastructure resilience includes absorptive capacity, the ability of a system to
withstand a disruption without impacting service; adaptive capacity, the ability of a system to be
reconfigured or repaired to meet service requirements; and recoverability, the ability of a system
to be quickly returned to nominal operation after a disruption. The designers and operators of re-
silient systems must be able to anticipate disruptive events and plan appropriate action. Avritzer
et al. [11] emphasize the importance of considering interdependence between infrastructureswhen
evaluating resilience (see Sec. 2.2). Kwasinski [116] further incorporates a meta-systemic goal of
long-term planning, improvement, and adaptation; a resilient system continues to evolve as com-
ponents age, requirements change, and analysis tools improve.

Ghosh et al. [78] outline a procedure for developing resilience metrics from reliability, performa-
bility, or availability models. First, a stochastic model for the chosen dependability attribute is
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developed. Next, a particular metric on this model is chosen as the measure of system functional-
ity. Finally, structural or parametric changes, which may include component faults, are made to
the system, and the resulting change in functionality is observed. Albasrawi et al. [6] apply this
methodology to measure not only the loss of functionality resulting from a cascading failure in a
power grid, but also the rate at which functionality is regained by different recovery actions. The
choice of recovery actions is governed by the maintainability of the system, demonstrating that
maintainability and resilience are interrelated.

Nan and Sansavini [157] identify three components of system resilience: ability to absorb faults
(i.e., robustness), ability to adapt and reconfigure to reduce the impact of faults, and ability to re-
store service after degradation. The authors propose a FOM-based resilience metric that captures
these components; it also captures the ability of systems to recover to a level of functionality higher
than their initial state. They develop a method for applying this resilience metric to complex inter-
dependent systems where no unified figure of merit exists. The interdependent system is divided
into subsystems for which a figure of merit can be defined. The interdependencies between sub-
systems are quantified using input and output variables that allow for simultaneous simulation
of subsystem models. Results from simulations can be used to identify the relative effect of each
interdependency on overall system resilience and components that can be improved to increase
system resilience.

Kwasinski [116] develops an alternative mathematical definition of resilience focused on the
ability of a power grid to serve customers. In this model, resilience is given by 𝑅 =

∑𝑁
𝑖=1𝑇𝑈 ,𝑖

𝑁𝑇 where
𝑁 is the number of loads to serve,𝑇𝑈 ,𝑖 is the amount of time the 𝑖-th load is served, and𝑇 is the total
time of the event being considered. This differs from availability in that 𝑇 is fixed to the duration
of one event and does not encompass long-term system behavior. Other aspects of resilience are
also quantified, including the rate of recovery, system resistance to failure, and system brittleness,
or the ratio of service outage to system damage. These metrics are applied to data from power
outages caused by hurricanes and their use in long term planning demonstrated.

Cybersecurity has independently developed several methods of scoring the vulnerability and re-
silience of computers; the Common Vulnerability Scoring System (CVSS) is one method based on
expert evaluation of discovered vulnerabilities. Jacobs et al. [101] use a control theory approach
to relate the performance of a smart power grid and the CVSS Impact Subscore (ISC) approach
to quantify cyber-physical resilience. ISC is computed based on the impact of a vulnerability to
a cyber system’s availability, e.g., a denial-of-service vulnerability that delays communication;
integrity, e.g., a signal-jamming vulnerability that adds noise to sensor readings; and confidential-
ity, e.g., a vulnerability allowing attackers to manipulate sensor values. The authors compute ISC
scores for several control system vulnerabilities and compare their effects on control-theory based
resilience scores [20]. Such scores measure the ability of the cyber system to control the physical
system and the extent of the control inputs required to recover from an attack.

Galvan and Agarwal [72] develop metrics for graph inter- and intra-community centrality with
a goal of understanding both the global and local behavior of networked systems. Inter-community
centrality reveals nodes essential for that community’s operation; intra-community centrality de-
scribes the role community nodes play in connecting to other communities. The authors apply
these to Britain’s railway system, identifying rail lines that carry relatively little traffic but are
critical to providing service to certain communities.

Ramirez-Marquez et al. [175] develop a graph-theoretic resilience score based on community
detection. They use the similarity between the communities detected in the initial system and the
communities detected after recovery from link failures to determine the resilience of a system.The
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more similar these communities are, the more resilient a system.This approach can also be applied
to determine the order in which to recover links based on minimizing the community difference.

Resilience is extended to systems-of-systems by Filippini and Silva [68]. They develop models
that incorporate resilience metrics from several systems, including the effects of one system’s
failure on the resilience of the others. For instance, a blackout in part of the power grid may cut
power to water distribution centers and trigger a failure in the water distribution network. They
model this failure propagation using a deterministic cause-effect model. However, this may not
capture all the effects of other systems on the resilience of the system under consideration, since
the state of other systems can affect both the likelihood of a component fault and the maintenance
time required to recover the system after a failure.

The resilience of Unified Power Flow Controllers (UPFCs) — a type of Flexible AC Transmission
System (FACTS) which consists of several subsystems that control and regulate the power on
a line — is investigated by Aminifar et al. [8]. The authors propose a resilience model for each
subsystem, then compose the models into a resilience model for the complete UPFC. They also
present techniques to reduce the model complexity.

Albasrawi et al. [6] use PSAT and the MIS technique to measure the reliability of a power grid
with and without a Static Synchronous Series Compensator (SSSC) FACTS. The authors also simu-
late and measure the resilience of this grid against particular three-line failures. Their work moti-
vates the challenge of designing smart grids that are both reliable and able to quickly recover from
failures when they occur.

Kelly et al. [109] consider how electric vehicles may impact the dependability of the power
grid. Such cars would significantly increase load on the power grid, leading to decreased stability.
The authors stochastically model the effect of different charging schedules on the sustainability,
stability, and resilience of the system.

Hosseini and Parvania [94] model the resilience of smart power grids in hurricane conditions.
The smart grid is capable of some amount of automated fault location; several fault isolation switch-
ing algorithms are evaluated for resilience. Several metrics for resilience are used, including maxi-
mum load loss, load restored by automation, and recovery rate. The authors compare the effect of
isolation algorithms and the level of automation present in the grid on resilience, finding that even
incomplete automation can greatly improve the resilience of a smart grid in extreme conditions.

A qualitative risk assessment ofWDNs is given in [87].The authors identify terrorist threats and
natural hazards that pose a risk to such networks. In addition, they outline 15 different avenues
for WDNs to be hardened against such risk. Each hardening approach must consider how the
security, redundancy, resilience, and robustness of the network will be affected by a particular
policy. Finally, they delineate research areas that provide a foundation for improved hardening
approaches. These research areas include quantitative risk analysis, economic or game-theoretic
models of attacks, and detailed system case studies.

A qualitative framework for assessing vulnerability of complex infrastructure in the face of
multiple threats, the Critical Infrastructure Elements Resilience Analysis (CIERA) is presented
by Rehak et al. [179]. This framework incorporates both technical and organizational elements of
resilience which are difficult to incorporate in quantitative models. The process begins by identi-
fying and describing system elements and threats to the system. These elements may be system
components, subsystems, or even organizational elements such as a security team. Element re-
silience is scored based on its judged robustness, recoverability, and adaptability, each of which
include both technical characteristics and organizational preparedness. Finally, the results are as-
sessed and weak points are identified and improved. The process is applied to a power grid control
room; this case study finds that the weakest aspect is the organization’s resilience due to its rigid
structure and low investment in mitigating cyber vulnerabilities.
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2.1.3 Robustness and Survivability. In addition to being maintainable, dependable CPSs must be
designed to be robust in order to meet the demand for uninterrupted service in the face of compo-
nent failures. Siewiorek et al. [190] define system robustness generally as the ability of a system
to tolerate errors. NIST [161] defines robustness as the ability of a system to operate correctly and
reliably across a wide range of operational conditions. Rungger and Tabuada [185] define robust-
ness for CPS as input-output dynamical stability, where bounded inputs have bounded effects on
the system. In the CPS domain, robustness is defined as the ability of a system to tolerate errors
without a reduction in performance. Žiha [229] delineates the difference between redundancy and
robustness: robustness is the ability of the system to respond to all possible failures, whereas re-
dundancy is concerned with local component failure. A robust system should be redundant, but a
redundant system may not be robust.

Koç et al. [113] provide a quantitative measure of robustness as the ratio of errors that cause a re-
duction in performance to the number of possible errors. For systems with continuous states, such
as power grids, robustness is closely related to the excess demand each element of the system can
sustain without failure. In the systems studied by the authors, robustness could be accomplished
using redundancy.

Rao et al. [176] present a graph model for CPSs and methods to compute the robustness level of
the system. They focus on making both the cyber and physical portions of a networked infrastruc-
ture robust by ensuring the systemmeets performance requirements with a specified probability in
the presence of cyber and physical degradations due to natural, accidental, and intentional errors.
They construct a cyber-physical network infrastructure graph model of the system’s components.
Game theory techniques are then used to model strategies attackers may use to compromise the
system. The result is a measure of how robust the system is to both natural and human-caused
failures. Yagan et al. [221] model a CPS as a cyber network overlaid onto a physical network and
evaluate system robustness based on the allocation of interconnected links between nodes in the
two networks. They also present an algorithm for allocating cyber-physical interconnection links
in CPSs. The algorithm is optimal against random attacks on CPS networks with unknown cyber
and physical topology.

Koç et al. [115] produce a robustnessmetric that captures system topology, power flow, and node
significance. Topology and power flow are combined using an equation that draws inspiration from
information-theoretic entropy computation. The authors use this metric to determine the effect of
adding lines to a power grid on system robustness. Critically, this approach is not simulation based
and thus is deterministic and scales to very large systems.

While robustness captures the ability of a system to tolerate an error, it does not capture a sys-
tem’s response to errors that cause a degradation in performance. Once the system’s performance
degrades, its analysis enters the purview of survivability. Robustness measures the ability of a sys-
tem to avoid failures; survivability measures a system’s ability to remain dependent after failures
occur.

The roots of survivability are in military applications which focus on mission fulfillment. Most
definitions of survivability are qualitative; for example, Ellison et al. [57] define it as the capability
of a system to fulfill its mission in a timely manner in the presence of attacks, failures, or accidents.
Themission of a system is a set of very high-level requirements or goals for that system; timeliness
means the mission is fulfilled by a user-specified time.

Queiroz et al. [174] define survivability as the capacity of essential services to provide their func-
tionalities in cases of malicious attacks compromising parts of the system. Such functionalities may
rely on other services of the system which are not necessarily essential. The definition focuses on
a specific service or component that must survive and how the interdependency between services
affects that survivability.
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There is no NIST definition for survivability; however, a number of NIST definitions for other
domains cover elements of survivability. The NIST definitions of robustness and resilience for
Information Assurance include the ability of a system to fail gracefully and operate in a degraded
state while maintaining essential capabilities [161, 181]. These two definitions describe survivable
behavior of a system.

Attacks, failures, and accidents are included in the definitions because they are all potentially
damaging events. The definitions focus on mission fulfillment, not on specific subsystems or com-
ponents that must survive. From them, we can distill a number of characteristics of survivable
systems:

Resistance to Attacks: Systems will be designed to repel attacks using strategies such as
user authentication or stochastically diverse programs.

Recognition of Attacks: Systemswill havemechanisms to detect attacks and determine the
extent of damage to understand the state of the system after an
attack. Possible strategies include intrusion detection and internal
integrity checking.

Recovery: Systems will be designed to recover essential services after an at-
tack and to be able to return to full capability. This includes restor-
ing compromised information as well as functionality within the
time constraint dictated by the mission. Strategies include data
replication, backup restoration and system reinitialization.

Adaptation and Evolution: Systems will be designed to adapt and evolve to reduce the effec-
tiveness of future attacks. One strategy to achieve this characteris-
tic is to improve intrusion detection using knowledge gained from
previous attacks.

Some of these characteristics fall under other non-functional attributes of CPSs. CPS survivabil-
ity involves graceful degradation, limiting fault-propagation, and minimizing effects on interde-
pendent systems.

Very few survivability definitions aremathematically precise enough to be usedwithmodels and
simulation to determine if system survivability requirements are met [112]. The T1A1.2 working
group, however, does provide one quantitative definition of survivability [83]:

“Suppose a measure of interest 𝑀 has the value 𝑚0 just before a failure occurs. The
survivability behavior can be depicted by the following attributes:𝑚𝑎 is the value of
𝑀 just after the failure occurs;𝑚𝑢 is the maximum difference between the value of𝑀
and𝑚𝑎 after the failure;𝑚𝑟 is the restored value of𝑀 after some time 𝑡𝑟 ; and 𝑡𝑅 is the
time for the system to restore the value of𝑚0.”

This definition of survivability captures the qualitative description of survivable behavior as well
as the time-varying behavior of the system after a failure occurs.

A number of approaches have been used to model survivability. Zhang et al. [226] present a
qualitative approach using attack graphs. In this approach, an attack graph is created using known
system vulnerabilities and their associated difficulty parameters. Each path represents a series of
exploits leading to an undesirable state. Each node represents the network states under attack and
each directed edge represents an attack action. Survivability analysis is conducted by defining the
states in the attack graph where the system fails completely and determining the cost associated
with each attack. In this case, survivability is associated with the difficulty and the destruction
level of an attack, quantitatively defining survivability as the minimal cost to compromise the
system. This model captures the probability that a system will meet its mission requirements in
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the presence of an attack, but neglects the presence of survivable system enhancements. It does
not model the timeliness or ability of a system to recover or the graceful degradation of a system.

Liu and Trivedi [135] introduce a method of modeling survivability using continuous time
Markov chains (CTMC) by combining a pure performance model and a pure availability model to
construct a composite performance–availability model. The pure availability model for a system’s
resources is modeled as a birth-death process where each state represents the number of function-
ing assets. The pure performance model is created using task arrival rates and service rates for
the system. It is a birth-death process, where each state represents the number of assets currently
tasked. The two models are combined to create a composite model which is then truncated based
on the survivability measure of interest. The desired survivability measures are obtained using
transient analysis. Many extensions to this model have been presented to incorporate different as-
pects of survivability. Cloth and Haverkort [42] developed a checking algorithm to decide whether
a system is survivable. Continuous stochastic logic [12] is used to phrase survivability in a precise
manner for CTMCmodels. Heegaard and Trivedi [92] expand and refine this method to determine
the scalability of the model as well as to model additional performance measures, such as failure
propagation and recovery using a phased recovery model.

Kim et al. [110] model the survivability of a wireless sensor network using a Semi-Markov
Process (SMP) instead of a simple Markov chain. The SMP captures that because the behaviors
of attacks, system responses to the attacks, intrusion detection, and repairing mechanism cause
sojourn time to be non-exponential.

System survivability has also been modeled using Petri nets. Castet and Saleh [34] explore the
applicability of stochastic Petri nets for multi-state failures and survivability analysis. They model
components with multiple operational states, allowing them to analyze survivability and focus on
failure propagation in the system that results in either graceful degradation or catastrophic failure.

Ghasemieh et al. [75] use a Hybrid Petri nets model to evaluate the survivability of fluid systems,
specifically, the survivability of a waste water treatment facility in the presence of component
failures or bad weather. Using this model they are able to determine under which circumstances
the system will overflow and thus fail.

Woodard et al. [216] use this simulator to demonstrate a simulation-based approach for eval-
uating the survivability of networked systems with an arbitrary known topology and provides a
technique for finding susceptible critical components based on this evaluation.

The effect of attacks on or failures in a WDN can be mitigated by isolating, i.e., temporarily
withholding service to a number of nodes. Selecting these nodes is a complex problem. Jeong and
Abraham [102] develop a genetic algorithm that generates strategies that attempt to minimize the
degree to which critical services are disrupted, the economic impact of the failure, and the number
of people affected. Their algorithm generates multiple strategies that provide different optimal
solutions to the service denial problem. Policy makers may then choose the strategy that best fits
the exact situation.

2.2 Interdependence
Rinaldi et al. [180] provide a qualitative analysis of interdependencies among the electric, water,
gas, oil, and telecommunication networks.The authors describe how a failure in one of the systems,
such as the power grid, can cause disruptions in other systems, such as curtailment in the produc-
tion of natural gas, or disruptions in irrigation pumps in the water distribution system. Laprie
et al. [118] introduce qualitative models for analysis of the interdependencies between electricity
and information infrastructures. The study addresses three types of failures that are of particu-
lar interest in interdependent infrastructures; namely, cascading failures, escalating failures, and
common-cause failures. In [53], a graph-theoretic approach is used to model interdependencies
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among four networks; the power grid, the gas network, the water delivery system, and the trans-
portation network. The study analyzes network resilience, which is defined as the capacity to
remain connected after vertex removal, and discusses fragmentation of networks due to failures.
Eusgeld et al. [59] discuss a system-of-systems approach formodeling interdependence among sub-
systems in a CPS. After comparing a number of related methods, they conclude that agent-based
modeling, high-level architecture, and hybrid systems show the most promise.

Vatn et al. [210] categorize system interdependence based on risk, vulnerability, and criticality
of the system being studied. Risk vulnerability assessment is used in [209] to infer the effects of
interdependence from observed failures. The authors provide a hierarchy of analysis steps that
progressively reveal greater detail about infrastructure while analyzing the failure event.

Marashi et al. [142] present an approach for quantifying and analyzing interdependencies in
CPSs. The authors identify sequences of cascading failures and build a graph of dependencies
among components based on these sequences. From these dependencies, dependency indices are
calculated that rank physical-physical, physical-cyber, cyber-physical, and cyber-cyber dependen-
cies in order of criticality.

Huang et. al. [96] model the interdependence of the power grid and communication/control
networks utilized in the Smart Grid. A failure in one of these networks can cause failures in the
other potentially leading to cascading failures. They calculate the size of the functioning area of
the network after a cascading failure using percolation theory. From this they determine the sur-
vival ratio of functioning to non-functioning nodes.Their analysis reveals a nonlinear relationship
between the number of controlling nodes and system survivability. They determine through both
mathematical and experimental results that a smart grid with more controlling nodes is more sur-
vivable.

Beccuti et al. [17] present a quantitative model that captures the interdependence between the
physical and cyber realms of a smart power grid.They use a stochastic well-formed net for detailed
representation of system protocols and avenues for denial-of-service attacks, facilitating analysis
of the effect of these attacks. The model is used to determine the effect of a denial-of-service attack
on the power grid as cyber control actions are taken.

Verma et al. [211] compare the sensitivity of graph-theoretic importance metrics (betweeness,
closeness, and degree centrality) to that of a power-flow-aware node significance metric. The sen-
sitivity of each metric is tested by removing the node considered most important by that metric
and computing the power flow of the resulting system. For completeness, the metrics are also com-
pared against a random node removal strategy. The authors’ results demonstrate that removing
the node considered most important by the node significance metric results in a power grid with
much lower performance than any other metric. Notably, the graph-theoretic metrics all perform
on par with random node removal. The authors conclude that node importance metrics that neg-
elect the dynamics of the physical system fail to capture essential information about that system’s
behavior.

Ezell et al. [60] outline an Infrastructure Risk Analysis Model to determine how the interde-
pendencies and interconnectedness of a WDN affect its safety. They define four steps: identifying
risks, modeling the risks, assessing the infrastructure’s ability to withstand damage, and managing
risk to the infrastructure. This methodology provides a holistic set of guidelines to policy makers,
showing the tradeoffs between cost and safety.

Katina et al. [107] discuss how interdependence affects healthcare infrastructure. Beyond sim-
ply studying the hardware and software of the infrastructure and providing guidelines or metrics
to improving it, the authors consider the role that operators and policy makers play in interdepen-
dence.
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Huang et al. [97] takes a graph-theoretic approach to modeling interdependence between a
power grid and its control system. As the controls require power, they implicitly depend on the
infrastructure they control. The authors model this as a directed bipartite graph of cyber and phys-
ical nodes where the edges represent dependencies. Each cyber node has an edge to the physical
node that powers it; each physical node has a bidirectional dependency on the cyber node that
controls it. Edges from physical nodes to physical nodes or cyber nodes to cyber nodes are allo-
cated following a scale-free graph model. A failure begins in one part of the bipartite network; it
is then propagated as failed components cause their dependents to fail. The authors observe that
increased connectivity increases the number of surviving nodes, that is, the number of nodes in
the giant component of each part. The effect is asymmetric between the parts; increased cyber
connectivity has a stronger effect on the overall system resilience.

Banerjee et al. [13] model one-step interdependencies in a system as where each component’s
dependencies are expressed as a statement using logical conjunction and disjunction. This model
formalism allows for complex relationships among components to be specified. In each time step
of a simulation, components whose sentence evaluates to false are marked failed; the complete
extent of failures is thus a fixed point of this iterative process. While the formulation of these
sentences is challenging for complex systems, they bring several benefits. The authors apply them
to produce optimal sets of components to harden in order to limit failures to a specific amount or to
keep costs within a specific budget. They prove that this problem is NP-complete, provide bounds
on how difficult it is to approximate solutions, and present heuristic algorithms for generating
solutions.

3 MODELING
Developing accurate models of CPSs is essential to analyzing and improving CPS architectures.
This section will first discuss modeling challenges and general qualitative and quantitative meth-
ods for modeling CPSs. Different modeling techniques will then be examined, along with solutions
to some modeling issues. Finally, we will present case studies from various CPS domains.

3.1 General Approach and Challenges
All CPS models must capture both cyber and physical components and behavior of the system. A
CPS model is comprised of models of physical processes, control software, computation platforms,
and networks [49]. CPS models fall into two broad categories: qualitative and quantitative. Qual-
itative modeling takes a high-level view of the system, describing system components and their
interactions. Detailed mathematical models of specific physical and cyber system components are
the realm of quantitative modeling.Qualitative models frequently drive the development of quanti-
tative models and provide a framework for combining disparate quantitative models into a unified
system model.

Representing both cyber and physical attributes in a single model is a significant challenge. In
CPS modeling, the sensitivity of physical systems to time delays must be captured, along with
the delay the cyber control system experiences between sensing and reacting to the physical
world [49, 197]. Timing is critical to the correctness, as well as the performance, of the control
system. Along with timing delays, system concurrency must be modeled; every real-world CPS
will feature multiple control units acting simultaneously on different parts of the physical infras-
tructure [88].

Most real-world CPSs depend not only on their own physical and cyber elements, but also on
other CPSs. For instance, the cyber portion of a power grid CPS depends on the telecommunica-
tions network, and the physical hardware running the telecommunications network depends on
the power grid. As such, failures in one CPS can cause cascading failures in other CPSs, and a
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vulnerability in one CPS can be exploited to cause failure in another. Interdependence modeling
is two-pronged: single-CPS models must capture dependencies among physical and cyber compo-
nents of a system [68, 97, 142], andmulti-CPSmodels must capture all of the possible dependencies
among the CPSs they model [85, 86, 148].

Implementing software to model CPSs necessarily involves elements of software engineering.
Abstract modeling languages such as UnifiedModeling Language (UML) can be used to createmod-
els from a high-level perspective. Code generation tools can be applied to these models to generate
both simulation software and cyber control software used in the CPS itself. Model composition al-
lows detailed models of elements, such as sensor nodes, to be composed into a larger model that
represents the complete CPS. Software engineering patterns, such as aspect-oriented programming
(AOP), provide useful abstractions and frameworks that ease the complexity of implementing mod-
eling software. Software quality and correctness tools can be used to validate models and prevent
simple mistakes, such as mismatches between units in equations [49, 196, 214].

Models play several roles in CPS development: analysis, synthesis, verification, and the oft-
overlooked role of communicating design features to other humans [122]. Broadly speaking, mod-
elers take either a prescriptive (termed ‘engineering’ by Lee et al.) or a descriptive (‘scientific’)
perspective when constructing a model. System specifications are one kind of prescriptive model:
a description of how a system ought to behave. With a prescriptive model, the model is created
first and the designers’ goal is to construct a system which follows the model. By contrast, a de-
scriptive model starts with a system and describes how it is behaving. In CPS design, descriptive
models are often made to check that a system meets its specification; this process is known as
model verification. Both perspectives thus play a critical role in system design.

CPS design requires multiple model formalisms at different levels of detail; one way of viewing
the relationship between these levels of detail is in terms of abstraction and refinement [122].
A model is a sound abstraction of another if it preserves “interesting” properties of that model;
a model refines another by adding additional detail without contradicting it. Several modeling
techniques can be cast in these terms. Analyzing a model consists of making a more abstract
model that preserves whatever property is to be analyzed. Model verification checks that some
model matches a specification — a more abstract model. By contrast, a physical system is not a
model and thus not a refinement of a specification. Instead, a model is faithful if properties of the
model also hold for the corresponding system. Validation is then the process of checking that a
model is faithful.

Lee [121] identify several limitations of CPS modeling. First, many models, including models
of real-world systems [203], exhibit chaotic behavior: small perturbations in inputs lead to vastly
different outcomes. Second, incorporating both discrete and continuous behavior in a single model
introduces several modeling issues. Causal loops can occurwhere amodel’s input at time 𝑡 depends
on its output at time 𝑡 and vice versa. Models can exhibit Zeno behavior, where an infinite quantity
of events occur in a finite time, such as in a simplistic model of a ball bouncing on a rigid surface.
Furthermore, even detecting Zeno behavior is difficult: depending on the power of the modeling
paradigm used, it may be as difficult as proving theorems, making a general algorithm for detecting
Zenoness intractable. Finally, defining model formalisms that only produce deterministic models
may also be intractable. The authors construct a model where two events happen at a particular
time offset 𝑡 ; for all 𝑡 > 0, the model is deterministic, but at 𝑡 = 0 the result depends on the
order in which the events are considered. These limitations show that modeling is an inherently
complex field; when constructing models and interpreting results, modelers must keep in mind
the limitations of their modeling formalism and understand the results their analysis approach
produces.
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3.2 Qualitative Modeling
Precisely capturing the complexities of CPSs is not an easy task due to the heterogeneity and
connectedness of components in the system. Models of a single CPS focus on abstracting the oper-
ation of the components into modules that are assembled into an overarching model. In Ilic et al.
[99], Xie and Ilic [218], a CPS is viewed as a set of non-uniform modules connected through both
cyber and power networks. Not all physical components can be modeled from first principles due
to their complex behavior. These devices are instead modeled as a cyber-physical module consist-
ing of a physical device and a cyber sensing and control device. Module dynamics can then be
discretized based on the sampling rate of the sensing device. Interdependencies among modules
are captured in the model, which serves as a basis for studying cyber improvements to the modeled
CPS. The combined model is used to determine the dynamics of the entire system and the effect
of various control actions on those dynamics. Thus, system performance can be analyzed in spite
of the complex interdependencies among modules.

Instead of considering a modular approach, Lin et al. [127, 129] model the relationship between
the cyber and physical using an ontology. Each cyber component is an actor that takes sensor data,
interprets it using the ontology, and decides on an action. This ontology captures the behavior
and relationships among components, whether cyber or physical. Fitch et al. [69] also take an
ontological approach to CPS modeling, incorporating critical systems heuristics from the social
sciences. The proposed model captures not only hardware and software components of a CPS, but
also human factors.

The future of autonomous vehicles in transportation systems presents additional challenges.
Koopman and Wagner [114] discuss the challenge of creating safe ITSs. The need for extremely
high safety levels requires system validation and verification approaches for both normal and ab-
normal environments and in the presence of system faults and partial failures. To address some of
these challenges, a systematic UML model-based method is proposed in [18] for planning valida-
tion and verification.

3.3 Quantitative Modeling
In contrast to qualitative modeling, quantitative approaches focus on developing mathematical
models of systems and system components.

A number of studies focus on the interaction between cyber-enabled components of a system
and the central control system that governs those components. Ravindran and Rabby [178] divide
a CPS into an Intelligent Physical World (IPW) and an Intelligent ComputationalWorld (ICW).The
IPW consists of the physical world and locally-acting cyber modules. It has three essential traits:
Programmability: The ability to specify how the ICW interacts with the physical world.
Observability: The ability for the ICW to know the inputs and outputs of the IPW.
Computability: The ability for the cyber modules in the IPW to generate outputs to the

physical world at a reasonable rate.
The ICW is comprised of the network connecting the cyber modules and the system providing

global control over the IPW. It is characterized by its ability to:
• generalize control across diverse networks and IPW devices,
• uncertainty in its model of the physical world, and
• be resilient to network failures.

Separating the ICW and IPW in this fashion allows for simpler mathematical models of the
control system.

A different approach to control network modeling is taken in [222], where the control network
is modeled using a stochastic Petri net (SPN). The SPN provides a state-based model of the system
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fromwhich transient and steady-state behavior can be determined. System reliability and availabil-
ity with no backup, cold backup, and hot backup are calculated. The authors also provide insights
on reducing the size of the SPN state space, which is prone to explosion when modeling real-world
control networks.

Monte Carlo simulation is a powerful tool, but on models with large numbers of parameters,
it becomes computationally infeasible to generate results with high levels of confidence. This is
due to the need for numerous simulation runs, varying parameters on each run. Schupfer et al.
[186] address this problem with range-based system simulation. They propose a semi-symbolic
solution using affine arithmetic that models the system numerically, but provides symbolic ranges
for system deviations.The result is a single solution that models the system output for the specified
range of system input.

FARE, a package for failure analysis and reliability evaluation for generic CPSs, is developed
by Wu and Kaiser [217]. It aims to provide benchmarks for design-time analysis and continuous
runtime metrics for interdependent CPSs. The tool incorporates a wide variety of analysis tech-
niques for both failure detection and reliability evaluation.

Andrijcic and Haimes [9] use metamodeling techniques to unify engineering, social, and eco-
nomic perspectives of bridge maintenance. Each domain is modeled individually as an optimiza-
tion problem involving several state variables and constraints. The models are then combined by
defining functions which map some of each model’s state variables to a shared state variable:
bridge traffic capacity. Shared state is identified by constructing system dynamics diagrams for
each perspective and identifying common influences. This technique is applicable to metamodel-
ing problems where each perspective can be captured using the same formalism.

Another multimodeling technique based on model refinement is presented in [16]. A railway
heater system is studied where heater controllers request power from a central distribution center.
Each controller, as well as the central control unit, is modeled as a contract automata.These models
are composed together; however, the resulting automata permits undesired behaviors, such as a
heater not being powered even when there is energy available for it. The authors define a notion
of refinement that allows them to eliminate these states without introducing out-of-spec behavior.
These models are then mapped to stochastic activity networks which allow the specification of
continuous-time dynamics, including rail thermodynamics and weather patterns. The result is a
metamodeling system where discrete and continuous dynamics can be correctly related.

A number of ITS models have been proposed to assist in the design of control systems. These
models target different elements in the systems.Themacroscopic continuous Petri net trafficmodel
proposed in [104] captures various trafficmodes such as free-flow traffic, traffic jams, and stop-and-
go waves. This model can be used to create a predictive control strategy. Another traffic model,
proposed by Fanti et al. [62], aims to estimate the state and control of freeways. This model uses
first-order hybrid Petri nets to capture the continuous and discrete behaviors of traffic systems.
This model becomes the basis of a networked control strategy for coordinating speed limits to
maximize flow. The model proposed in [50] focuses on control of real-time urban traffic lights. A
colored Petri net model is used with a genetic algorithm to optimize control of traffic light. This
model uses vehicle-to-infrastructure communication to obtain data. Grether et al. [82] develop an
agent-based simulation of the interaction between vehicle agents and transportation systems.This
simulation utilizes a queuingmodel to capture traffic flow and spill-back at congested intersections.
Similar models have been proposed for rail and aviation systems [30, 228].

When constructing dependability or performance metrics for systems, it is necessary to validate
them on a variety of systems. Instead of constructing several large power grids by hand, Thacker
et al. [201] develop a power grid synthesis algorithm that replicates key properties of existing
power grids. Their algorithm generates random power grids with the same hierarchical structure
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and node (generator, transformer, bus, or load) degree distribution. It also replicates physical at-
tributes: node location and edge (power line) length distributions, both of which play a critical role
in power grid performance. This algorithm can also be used to generate detailed power grids from,
say, the high-voltage portion of an existing network.

3.4 Hybrid Modeling
Differences in time scales pose a significant challenge to design, modeling, and simulation of
CPSs [119].

Quantitative CPS models can be classified based on their representation of time — a significant
challenge in representing both cyber and physical elements in a single model. Control software
must decide how continuous-time physical events are encoded into a discrete-time system, and
CPS models must incorporate both continuous-time and discrete-time system behavior. Tan et al.
[198] develop a CPSmodel that treats all events as if they have discrete time.The authors argue that
since the control system perceives time as discrete, the continuous nature of the physical world is
invisible to the control software and thus the model. Events, which include both observations of
the physical world and control actions, can be either instantaneous or interval-based, and can be
related using temporal operators such as Before, After, During, Begin, and End.Themodel provides
means for tracking where in the CPS events are generated and processed.

The continuous nature of the physical world is addressed by Rovers et al. [182], who develop
CPS models that mix discrete and continuous time. Physical signals are stored as continuous math-
ematical functions that are evaluated at discrete times as needed by the cyber modules. Sensor
nodes generate these physical signal functions and intermediate processing nodes are modeled as
functions that operate on the input parameters to signal functions. Riemann sums of the resulting
functions allow the model to capture system behavior over periods of time. Fitzgerald et al. [70]
demonstrate an alternate approach to combining continuous and discrete event models. The mod-
els are evaluated through simulation; time is synchronized between simulators for each model of
the system. This process of co-simulation requires that each simulator is capable of communicat-
ing values to and from the others; continuous-time simulators must be able to inject discontinuous
discrete events, and discrete-time simulators must be able to sample the continuous model values
at some frequency. Further development of timing models is an open research area.

An application of state-based temporal semantics is the PTIDES project by Eidson et al. [56]. A
network-wide time server is used to synchronize many control systems, providing a global stan-
dard for temporal semantics in a distributed system. The system is capable of coordinating simul-
taneous actions across multiple systems without delay that could otherwise have severe effects
on the physical world. Cardoso et al. [32] investigate the limitations of network time synchroniza-
tion, including network latency and variance in network latency. They put forth suggestions for
improved network hardware and software, as well as providing a foundation for modeling network
delay in CPSs.

The Architecture Analysis and Design Language (AADL) [67], a set of formal modeling concepts
for describing complex systems, forms a foundation for several CPS modeling tools. ADAPT [183]
is a tool for generating stochastic Petri net models of system dependability from AADL architec-
tural models. Hecht et al. [91] extend AADL and ADAPT to produce stochastic analysis networks
for modeling the reliability of systems. AADL is extended with temporal semantics in [88]. The
authors introduce a durational calculus that encodes timing information on system states and state
transitions. System properties such as safety, liveness, and reliability are formulated in the calcu-
lus, allowing for basic formal reasoning about system properties with respect to time. Basing these
modeling tools on AADL allows each of them to be easily applied to the same system architecture
representation.
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Bradley and Atkins [26] propose a system for co-modeling cyber and physical infrastructure.
This combined model allows the cyber infrastructure to understand the effect of both physical
actions on the physical world and cyber actions (such as changing sensor sampling rates) on the
control system. The complete CPS is modeled as a continuous linear system. Solutions to this
system optimally balance physical system stability and cyber computational load, which allows
for system designs that are flexible with respect to usage of power and computational resource
usage.

Ten et al. [199] focus on detecting anomalies in the Supervisory Control and Data Acquisition
(SCADA) controls of a power grid that may be caused by malicious activities. The authors provide
a taxonomy of SCADA information sources. Using this taxonomy, they correlate the temporal and
spatial locality of events that occur during normal operation or under common failure modes. If
the system detects events that are not correlated, it can report these as likely malicious actions.

Another tool for composing discrete- and continuous-timemodels,TheModelverse, is presented
by [200]. This tool provides several domain-specific languages for specifying state machines, sys-
tem architecture, temporal predicates, and physical dynamics. The Modelverse has a formalism
transformation graph that defines transformations between model types. This is used in tandem
with an architecture model to define how the various models are composed into a single Petri net
model.

Bliudze et al. [21] identifies several challenges in CPS modeling and design. Two physical mod-
eling languages are presented: linear graphs and bond graphs. Both have trade-offs: linear graphs
sometimes force an unusual choice of variables on designers, while bond graphs cannot be easily
composed and thus require designers to describe the entire physical system in one model. Once
these models have been constructed, they must be discretized for computer simulation. In this pro-
cess, designers must make assumptions about the system, such as the minimum interval between
two discrete events. Physical model results can be very sensitive to initial conditions; furthermore,
certain conditions can lead to multiple solutions. Thus, choosing these automatically is difficult.
Finally, for systems where various subsystems require different solvers, coordinating time and
results between them is challenging.

The issue of representing time in hybrid models is a universal challenge. Cremona et al. [46]
identify several issueswith the common choice of using a single floating-point number to represent
time. Floating-point numbers are not equally spaced; as the magnitude of a number increases, the
gap between consecutive numbers becomes larger, causing the precision to decrease. The effect is
that the choice of the time origin can affect the precision of simulation results. In addition, this
causes addition to not be associative: if 𝑡1, 𝑡2, 𝑡3 have different magnitudes, it is not guaranteed that
(𝑡1 + 𝑡2) + 𝑡3 = 𝑡1 + (𝑡2 + 𝑡3). This causes equality to become meaningless: if 𝑡2 has a large magnitude,
(𝑡1+𝑡2) −𝑡2 ≠ 𝑡1. Thus, just because two events have the same floating-point timestamp, we cannot
know they occur simultaneously. Furthermore, using a single timestamp does not allow encoding
of causality among simultaneous events. To address these issues, the authors propose superdense
time, where time is represented as a tuple (𝑡,𝑚) where 𝑡 , the model time, is a real number and
𝑚, the microstep, is an integer. Two events are understood to be simultaneous if the model time
of their timestamps agree. The microstep allows simultaneous events to be ordered, preserving
causality even if two discrete events occur at the same time. For simulation purposes, they suggest
approximating the model time as an integer multiple of some minimum time step. Finally, they
provide an extension to the Functional Mockup Interface and define methods for converting these
timestamps to and from floating-point timestamps for simulators.
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3.5 Simulation
Loki is a tool for modeling fault injection in distributed systems [36]. It instruments part of a dis-
tributed system, capturing the system state as visible from each instrumented node. Each instru-
ment can then inject faults and observe how they propagate through the system.The observations
are then used to generate measures of system performance in the presence of faults.

Integrating existing software tools, rather than developing brand-new software, is a cost-effective
approach to CPS simulation. A tool that integrates the ns-2 network simulator [164] with the Mod-
elica framework [155] is described in [4]. As the Modelica framework is a modeling language for
large-scale physical systems, integrating it with ns-2 allows the physical world to be simulated
jointly with a controlling actuator network. An update to the work, [5], addresses synchroniza-
tion between Modelica and ns-2, as asynchronous event handling can have catastrophic effects
on system functionality. Pan et al. [169] propose another co-simulation framework that integrates
power grid and communication network simulations utilizing MATLAB and ns-3 [163], the suc-
cessor to ns-2. Chu et al. [38] use ns-2 and OpenDSS [58] to simulate network effects on smart
grid performance when dynamic demand response controllers are used.

In [193], the DIgSILENT Power Factory [51], MATLAB Simulink [146] (including the SimEvents
toolbox [145]), and the Matrikon OPC Server [147] are integrated into a unified simulator that
captures the effect of cyber-attacks on the performance of CPSs. Marashi and Sedigh Sarvestani
[143], Woodard et al. [216] combine PSAT [151], a MATLAB-based power systems simulator tool-
box, with libraries that simulate cyber infrastructure and form an integrated smart grid simulator.
This package simulates the behavior of measurement, control, and communication systems and
provides decision support algorithms. Lin et al. [126] combine EPANET [208] and MATLAB to
simulate a water distribution network, where the MATLAB program simulates the cyber network
and provides inputs to EPANET, which simulates the pipe network.

Brooks et al. [28], Goderis et al. [80], Ptolemaeus [173] present Ptolemy, a tool for multimodeling
of CPSs. Ptolemy is very flexible in what it can model; users can create their own model types and
develop algorithms for model evaluation. Ptolemy supports integration of heterogeneous models,
where component models of different types are integrated into a complete system model.

Clark et al. [40], Courtney et al. [43, 44], Gaonkar et al. [74] developMöbius, a tool that combines
many model solution methods and formalisms into a single package. The infrastructure provided
by Möbius abstracts model details, allowing users to develop plugins to integrate different model-
ing programs. Users can express models in different languages and apply various solvers to them,
making it easy to compare solution techniques. Bohnenkamp et al. [22] combine Möbius [40] and
the MoDeST modeling language [55] to model both qualitative and quantitative aspects of CPSs.
System models can be formally verified with Möbius’s model-checking capabilities.

Al-Hammouri et al. [4] have developed a method for simulating a power grid as a sensor-
actuator network, using Modelica to model the physical world and ns-2 to simulate the sensor
network. Because the network portion both senses and acts upon the physical world, synchroniza-
tion of the two simulators is required. This is done by allowing ns-2 to stop and start Modelica as
needed, preventing Modelica’s in-simulation time from exceeding the in-simulation time of ns-2.
The end result is a simulation of a cyber control loop that regulates the voltage of a power supply
for a variable load, taking into account network delays and losses that prevent the system from
instantaneously reacting to varying system load.

Instead of looking at the power grid as a single complex system, Xie and Ilic [219] envision it as
an interconnected series of modules. Each module has defined goals that make up the overarching
goals of the power grid itself. These modules communicate with each other, exposing specific
variables that other modules can set as needed. System performance is guaranteed by each module
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performing its assigned goals. The authors consider a case study where a wind generator module
is brought into such a power grid. A modular model architecture would be especially applicable
in open-access grids or microgrids, where many independent users both produce and consume
electricity.

Giustolisi et al. [79] present a simulationmethod for analyzing the behavior of water distribution
networks (WDNs), based on pressure as a metric of functionality. During operation, a WDN’s
topologymay change as valves open and close or if a pipe bursts.This simulation can identify nodes
in the network that are disconnected or fail to retain adequate pressurewhen the network topology
changes. The technique can be used on very large networks, where exhaustively enumerating all
topological changes is mathematically intractable.

Lin et al. [130] present an integrated cyber-physical simulator for WDNs, based on EPANET
and MATLAB for simulation of the physical and cyber infrastructures, respectively. The physical
portion of the network is simulated using EPANET, while the cyber portion is simulated using
algorithms implemented in MATLAB. The simulator can facilitate identification of near-optimal
controller settings. Lin et al. [132] apply game theory to provide decision support for water distri-
bution.

Hasan et al. [90] develop a power grid simulator that incorporates control and protection ele-
ment models. These models allow them to simulate faults in distance relays, overcurrent relays,
and circuit breakers. The simulator is developed in Simulink, allowing timed sequences of both
cyber and physical faults. Timing contingencies for 𝑁 − 𝑘 contingency analysis is done manually
but could be automated.

A refinement approach can also be applied to simulation, as in [31]. Initially the authors model
both a controller and a physical plant using Sequential Function Charts, a nondeterminstic timed
automata language. The plant model is constructed in a modular fashion, allowing re-use and
simplifying the modeling process. These models can be co-simulated to verify the controller’s
behavior. Both models are then converted to PLC ladder logic, producing both the control software
and amodel of the plant that can be used to validate that software.These are executed on two PLCs,
demonstrating the faithfulness of the controller model.

In agent-based modeling, the behavior of one or more intelligent components is abstracted as
an autonomous agent. This abstraction, which facilitates system-level analysis, has been demon-
strated to be useful in modeling complex distributed systems, and holds promise for overcoming
the challenge of modeling heterogeneous CPS components. Recent studies demonstrate the use of
this technique in modeling complex distributed systems.

Two seminal tutorials, [137, 138], provide a comprehensive introduction to agent-based mod-
eling and simulation (ABMS). They describe the theoretical and practical foundations of ABMS,
identify toolkits and methods for developing ABMS models, and compare ABMS with traditional
modeling techniques.

A method for modeling dynamic and intelligent reconfiguration of real-time distributed control
systems is introduced in [27]. These systems incorporate intelligent entities in the control net-
work to enable quick reconfiguration—an ability that yields resilient CPSs. ABMS is particularly
well-suited to modeling this type of system since each intelligent entity can be described as an
autonomous agent. The model proposed by Nguyen et al. [159] represents both the logical connec-
tions among agents and their physical location to capture cyber and physical interdependence in
both discrete- and continuous-event systems.

Lin et al. [128, 131, 133] propose a method for modeling interoperation among distributed, het-
erogeneous agents. They describe the semantics of agent data and use an ontology to define how
data from different agents can be related. Data interoperability allows agents developed by several
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entities to be combined into models of large-scale CPSs. Their work also forms a foundation for
modeling data flow, data corruption, and data cleansing in CPSs.

3.6 Formal Verification
Another take on modeling and analyzing control systems with very large or infinite state spaces
is given in [41]. The authors propose a formal verification technique to model the system using
linear temporal logic. Monte Carlo simulation is then used to determine the probability of system
failure, even if the failure event is very rare.

Laibinis et al. [117] model the resilience of data processing systems of a CPS. Such systems
need to process large amounts of data in parallel and withstand failure of nodes in the system.
They model complex processing systems in Event-B [1], a modeling formalism that can capture
both the initial configuration of the system as well as dynamic reconfigurations. Each system is
checked using statistical model checking to determine how likely it is to successfully process data.

In aspect-oriented programming, each concern of the system, such as control, schedulability, scal-
ability, and optimization, is considered an aspect and the system is represented in terms of these
aspects. This enables the creation of simple models that encompass a single aspect of the system,
resulting in a higher-level separation of concerns than traditional object-oriented programming
allows. Aspects can subsequently be combined to create a complete representation of the system.

Zhang [224] proposes an aspect-oriented formal specification approach for real-timeCPSswhere
various formal specification languages are semantically integrated instead of using a single spec-
ification technique for all concerns. The author also provides some verification techniques. Re-
lated verification techniques are proposed in [223] and [134], where the authors present an aspect-
oriented model-driven architecture development method for non-functional requirements of CPSs.
Aspects are identified as crosscutting non-functional properties of the system. The development
process is driven by first generating a platform-independent model of the system, considering the
functional requirements, and then weaving the generic aspects of the target system into the model
to produce the platform-specific model.

Zhang and He [225] propose an aspect-orientedmethod for specifying quality of service require-
ments for CPSs. It uses a combination of UML, Real Time Logic (RTL), and Extended RTL (ERTL)
which specify both relative and absolute timing in a real-time CPS. The resulting model uses both
formal and semi-formal notations that provide a basis for a rigorous and practical QoS modeling.

Additionally, [76] present a formal, model-checking algorithm to evaluate the survivability of
fluid critical infrastructures.Their procedure recursively traverses the state-space of themodel, and
identifies regions that satisfy a Stochastic Time Logic formula. This can be used to direct repair
and maintenance as well as identify areas of the system requiring improvement.

A significant difficulty in CPSmodeling is representation, in a unified model, of both continuous
physical world and discrete cyber events. A gap inevitably arises between the discrete sensing and
actuation ability of the control infrastructure and the continuous nature of physical events. This
gapmay cause the control infrastructure to fail to sense certain events or to violate the safety of the
system by failing to control it properly. CPS modeling must capture both continuous physical and
discrete cyber events in order to verify system safety. Susuki et al. [195] propose the use of hybrid
system theory to address this challenge. In their approach, operational system states are identified
and reachability analysis is used to ensure that only these operational states are reachable. Their
analysis focuses on transient system stability, but the technique is applicable to larger systems and
longer time durations.

Sun et al. [194] build a model of a smart grid in RT-PROMELA and use the model-checking
software RT-SPIN [205] to verify that overall system properties hold. In order to ensure that the
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model-checking problem remains tractable, the system is decomposed into modules that are indi-
vidually modeled and checked. The composition of these models is then checked to ensure inter-
action among modules does not cause violations of correctness or related system properties. The
authors focus on physical sampling rates, ensuring that the sampling frequency of each module is
sufficiently high to sense all events.

Unlike critical infrastructure CPS systems, medical devices are significantly more difficult to test
during development. One approach to testing such systems is simultaneous simulation of both the
medical device and the organ it is controlling. Jiang et al. [103] develop a virtual heart model for
verifying pacemaker designs. The heart is modeled using both a geometric model and a temporal
logic model. These models are overlaid onto a diagram of the heart, providing information about
the propagation time of signals within the heart. Temporal logic is used to formally model the
pacemaker, which allows the two models to be combined. The correctness and completeness of
the proposed models are verified using closed-loop case studies.

Testing medical devices in real-world situations is difficult and highly regulated, and as such,
model-driven design is a common approach to building medical CPSs. Detailed model-checking of
all software used in such devices is necessary to ensure high confidence in their operation [123].
Interoperability with a broad range of emerging and legacy medical devices is critical, as is correct-
ness of operation. Finally, a host of legal regulations govern and introduce significant constraints
on the design and operation of these devices. Murugesan et al. [156] use qualitative architecture
modeling and continuous-time quantitative modeling to capture design requirements and ensure
that they are met. Li et al. [125] use formal verification to ensure that a pacemaker behaves as
intended. They verify both the outputs of the system and the timing of those outputs and demon-
strate the ability of their verification technique to find vulnerabilities in the system.

Formal verification results can be used to determine simulation parameters, ensuring simulation
accuracy and assisting developers in writing specifications for physical systems [45]. The authors
demonstrate this by constructing a real-time model of an HVAC controller and network protocol
which is formally verified to meet certain timing and communication properties. The verification
process determines what reasonable timing constraints are; these constraints are then used in
a simulation of the whole system to determine the behavior of the physical HVAC plant under
worst-case conditions.

Verification can be applied to dependability requirements as well. Drozdov et al. [52] study a
fault location and isolation system for a power grid. This system is verified using a closed-loop
model that incorporates both the controller and a model of the physical grid. The controller model
alone has 277 reachable states; adding the physical model reduces this to 28 by eliminating impos-
sible physical states that the controller model cannot know about. With this model it is possible
to verify conditions such as “if a fault occurs, it will be isolated” and “if a circuit breaker trips, a
corresponding switch will isolate the fault”. Furthermore, it can be verified that circuit breakers
always trip immediately after a fault occurs.

A challenge to formal verification is that verification languages are unfamiliar to control sys-
tem programmers. Sirjani et al. [191] develop Lingua Franca, a language similar to many common
programming languages that can be compiled both to standard programming languages and to
Timed Rebeca, a verification language. They construct a model of an automated train which con-
tains several controllers and verify that it is safe. This model is able to demonstrate that ignoring
the time actions take to complete in the physical world can lead to transient unsafe states where
several actions occur in a non-deterministic order. Adding time delays to actions to synchronize
them eliminates these states.

Much of CPS verification is done using model checking tools; however, verifying complex pred-
icates on large systems can be intractable. Theorem proving tools can avoid these issues at the
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cost of being only partly automated. Traditionally the realm of certain mathematics and software
engineering fields, they have more recently begun to be applied to CPSes. Rashid et al. [177] sur-
vey many of these applications and compare the expressiveness of various tools. While these tools
are quite powerful, designers must develop theories of discrete- and continuous-time system be-
havior before they can apply these tools to verification. Of the theorem provers surveyed, only
KeYmaera [172] already has theories for hybrid systems and is thus readily applicable to CPS ver-
ification.

4 OPEN QUESTIONS
5 CONCLUSION
Cyber-physical systems present many challenges to be addressed by modeling and design tech-
niques. Among these challenges are interdependencies among components, the large-scale nature
of CPSs, real-time processing and actuation constraints, and providing trustworthy service. As part
of addressing these challenges, various non-functional attributes of CPSs are defined to capture
the dependability of service in the face of component faults. In this paper, we describe numerous
techniques for modeling both functional and non-functional attributes of CPSs. Furthermore, we
investigate design approaches that address the challenges of building CPSs that are dependable
and performant. In addition to modeling and design techniques that apply to any CPS, we pro-
vide case studies in the smart grid, water distribution network, medical, collaborative robotics,
intelligent transportation, and intelligent and reconfigurable manufacturing domains. These case
studies provide examples of how generic techniques can be applied to specific systems and address
concerns specific to each domain. The works in this paper provide a foundation for building both
dependable and performant CPSs.
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