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INTRODUCTION

¸ Static electricity discharge can cause:

- Screen glitches

- Program crashes

- Erroneous software operation

- System resets

- Permanent hardware failures

¸ Dependable cyber-physical systems must be 

robust to the effects of these shocks

¸ The effects of these shocks on system hardware 

are much better understood than they are for 

software operation
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MONITORING ESD

¸ Hardware instrumentation

- Can provide a precise understanding of how Electro-Static Discharge (ESD) entered and 

propagated through the system

- Is difficult to scale up to instrumentation for the whole system

- Is infeasible to implement for field tests on commercially available equipment

- Tests are often implemented using custom low-level software rather than a typical system 

software load

¸ Software instrumentation

- Is often focused on user-visible faults such as display flicker and program crashes

- Investigates lower-level faults, such as bit errors in registers, and is usually done with low-level 

code that cannot coexist with other software

- The software executing on a system can affect its immunity to ESD



5 of 22

RESEARCH OBJECTIVES

¸ Improve software instrumentation for low-level faults

¸ Achieve software fault detection on consumer hardware in field use conditions

¸ Enable lightweight real-time monitoring and failure recovery

¸ Create a generic approach that applies to many system peripherals

¸ Validate and demonstrate by applying to USB devices
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MONITORING APPROACH

¸ The USB Host Controller connects to the USB bus and performs low-level USB host 

device duties

¸ Responsibilities:

- connecting and disconnecting devices

- configuring power delivery

- communicating control and data signals between the systemõs memory and the USB devices
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MONITORING APPROACH

¸ The Host Controller exposes a set of control registers to the host CPU

¸ These registers conform to Open Host Controller Interface specifications

¸ We record snapshots of these register values to approximate the HCõs internal 
operation, presuming that:

- Certain sequences of values will be common during typical system operation

- When exposed to ESD, we may observe anomalous values or sequences of values

¸ Our goal is to infer ESD exposure from anomalies in recorded traces of these 

snapshots
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INITIAL INSTRUMENTATION
APPROACH

¸ Directly read the memory-mapped Host Controller registers

¸ Modified an open-source tool, Myregrw, to suit our needs

- System driver that reads memory addresses on command

- User program that sends control signals to driver and records values

¸ Read values continuously while exposing the system to ESD

¸ Problem: register values remained mostly constant

¸ This approach failed to capture even typical Host Controller operation. Why?
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INITIAL INSTRUMENTATION
APPROACH

¸ We empirically determined the sampling rate of Myregrw on our system to be 342 Hz

¸ Assuming that, in the worst case, the register values change at 400 MHz, we have a 

0.000856% chance of observing a given value

¸ Furthermore, Myregrw is racing the Host Controller driver to read the values written by 

the host controller before its driver overwrites them

¸ A new approach was needed to address both of these issues

Myregrw 

snapshot

ESD 

event

Driver overwrites 

register values

Myregrw 

snapshot
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IMPROVED INSTRUMENTATION APPROACH

¸ Instrument the USB Host Controller driver to record the register 

values at the start of each function

¸ Gives an exact picture of what the driver òseesó the host 

controller doing

¸ Requires minimal modifications to the driver code

¸ Values are recorded using the standard kernel logging 

framework

¸ Overhead is low: about 10% with a naive logging approach
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ANALYSIS APPROACH

¸ Monitor system operation both without interference and while exposed to ESD

- Baseline logs capture ônormalõ system behavior without interference

- ESD-exposed logs capture normal and abnormal system behavior

¸ These log files consist of sequences of snapshots of register values

¸ We refer to a log as an execution trace

¸ We refer to a snapshot of the registersõ values as a state
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ANALYSIS APPROACH

¸ Identify and coalesce duplicate states in each trace to construct an execution graph

- We also record the path through the graph taken by the execution trace

¸ Identify and coalesce duplicate states in each graph to construct a global execution 

graph

- We ignore certain registers whose values are memory addresses set by the kernel memory allocator, as 

they do not reflect the operation of the Host Controller itself

- Execution paths through the global graph are recorded for each trace

¸ We can then identify states and transitions unique to ESD-exposed execution traces
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CASE STUDY

¸ System: FriendlyArm mini2440

- 400 MHz ARM Samsung CPU

- Running Linux as the operating system

¸ A flash drive is attached and a script runs to copy data to and 

from it

¸ Several ESD injections were performed:

- Electric field coupling probe: ESD pulses between 500 V and 5.5 kV

- Magnetic field coupling probe: ESD pulses between 500 V and 8 kV

- The system proved to be more immune to magnetic field coupling, hence 

the higher pulse voltage

- Probes were positioned over the USB port or the USB Host Controller IC
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RESULTS: REGISTERS

¸ The HcInterruptEnable and HcInterruptDisable registers control whether 

the various hardware interrupts on the Host Controller are enabled or disabled

¸ When read, these registers ought to be duplicates of each other

- Baseline data confirms the host controller follows this specification

- However, under ESD exposure, slight dissimilarities are observed: bit 7 sometimes disagrees


