
SOFTWARE-BASED MONITORING AND
ANALYSIS OF A USB HOST CONTROLLER SUBJECT TO 
ELECTROSTATIC DISCHARGE

Presenter: Natasha Jarus

Authors: Natasha Jarus, Antonio Sabatini, Pratik Maheshwari, and Dr. Sahra Sedigh Sarvestani

June 10, 2020



2 of 22

INTRODUCTION

Natasha Jarus

I am a PhD candidate in computer engineering at the 

Missouri University of Science and Technology. My 

work focuses on modeling and metamodeling 

complex systems to understand and improve their 

dependability.

This research has been done in collaboration with 

Samsung, Ford, and the Missouri S&T Electromagnetic 

Compatibility Lab.



3 of 22

INTRODUCTION

¸ Static electricity discharge can cause:

- Screen glitches

- Program crashes

- Erroneous software operation

- System resets

- Permanent hardware failures

¸ Dependable cyber-physical systems must be 

robust to the effects of these shocks

¸ The effects of these shocks on system hardware 

are much better understood than they are for 

software operation



4 of 22

MONITORING ESD

¸ Hardware instrumentation

- Can provide a precise understanding of how Electro-Static Discharge (ESD) entered and 

propagated through the system

- Is difficult to scale up to instrumentation for the whole system

- Is infeasible to implement for field tests on commercially available equipment

- Tests are often implemented using custom low-level software rather than a typical system 

software load

¸ Software instrumentation

- Is often focused on user-visible faults such as display flicker and program crashes

- Investigates lower-level faults, such as bit errors in registers, and is usually done with low-level 

code that cannot coexist with other software

- The software executing on a system can affect its immunity to ESD



5 of 22

RESEARCH OBJECTIVES

¸ Improve software instrumentation for low-level faults

¸ Achieve software fault detection on consumer hardware in field use conditions

¸ Enable lightweight real-time monitoring and failure recovery

¸ Create a generic approach that applies to many system peripherals

¸ Validate and demonstrate by applying to USB devices



6 of 22

MONITORING APPROACH

¸ The USB Host Controller connects to the USB bus and performs low-level USB host 

device duties

¸ Responsibilities:

- connecting and disconnecting devices

- configuring power delivery

- communicating control and data signals between the systemõs memory and the USB devices



7 of 22

MONITORING APPROACH

¸ The Host Controller exposes a set of control registers to the host CPU

¸ These registers conform to Open Host Controller Interface specifications

¸ We record snapshots of these register values to approximate the HCõs internal 
operation, presuming that:

- Certain sequences of values will be common during typical system operation

- When exposed to ESD, we may observe anomalous values or sequences of values

¸ Our goal is to infer ESD exposure from anomalies in recorded traces of these 

snapshots



8 of 22

INITIAL INSTRUMENTATION
APPROACH

¸ Directly read the memory-mapped Host Controller registers

¸ Modified an open-source tool, Myregrw, to suit our needs

- System driver that reads memory addresses on command

- User program that sends control signals to driver and records values

¸ Read values continuously while exposing the system to ESD

¸ Problem: register values remained mostly constant

¸ This approach failed to capture even typical Host Controller operation. Why?



9 of 22

INITIAL INSTRUMENTATION
APPROACH

¸ We empirically determined the sampling rate of Myregrw on our system to be 342 Hz

¸ Assuming that, in the worst case, the register values change at 400 MHz, we have a 

0.000856% chance of observing a given value

¸ Furthermore, Myregrw is racing the Host Controller driver to read the values written by 

the host controller before its driver overwrites them

¸ A new approach was needed to address both of these issues

Myregrw 

snapshot

ESD 

event

Driver overwrites 

register values

Myregrw 

snapshot



10 of 22

IMPROVED INSTRUMENTATION APPROACH

¸ Instrument the USB Host Controller driver to record the register 

values at the start of each function

¸ Gives an exact picture of what the driver òseesó the host 

controller doing

¸ Requires minimal modifications to the driver code

¸ Values are recorded using the standard kernel logging 

framework

¸ Overhead is low: about 10% with a naive logging approach



11 of 22

ANALYSIS APPROACH

¸ Monitor system operation both without interference and while exposed to ESD

- Baseline logs capture ônormalõ system behavior without interference

- ESD-exposed logs capture normal and abnormal system behavior

¸ These log files consist of sequences of snapshots of register values

¸ We refer to a log as an execution trace

¸ We refer to a snapshot of the registersõ values as a state



12 of 22

ANALYSIS APPROACH

¸ Identify and coalesce duplicate states in each trace to construct an execution graph

- We also record the path through the graph taken by the execution trace

¸ Identify and coalesce duplicate states in each graph to construct a global execution 

graph

- We ignore certain registers whose values are memory addresses set by the kernel memory allocator, as 

they do not reflect the operation of the Host Controller itself

- Execution paths through the global graph are recorded for each trace

¸ We can then identify states and transitions unique to ESD-exposed execution traces



13 of 22

CASE STUDY

¸ System: FriendlyArm mini2440

- 400 MHz ARM Samsung CPU

- Running Linux as the operating system

¸ A flash drive is attached and a script runs to copy data to and 

from it

¸ Several ESD injections were performed:

- Electric field coupling probe: ESD pulses between 500 V and 5.5 kV

- Magnetic field coupling probe: ESD pulses between 500 V and 8 kV

- The system proved to be more immune to magnetic field coupling, hence 

the higher pulse voltage

- Probes were positioned over the USB port or the USB Host Controller IC



14 of 22

RESULTS: REGISTERS

¸ The HcInterruptEnable and HcInterruptDisable registers control whether 

the various hardware interrupts on the Host Controller are enabled or disabled

¸ When read, these registers ought to be duplicates of each other

- Baseline data confirms the host controller follows this specification

- However, under ESD exposure, slight dissimilarities are observed: bit 7 sometimes disagrees


