
Making GUIs with Qt 4

Besides making clickable programs, learning to program GUIs will
give you several other skills with C++:

I Event-based programming
I Working with a (very) large library
I Managing memory in more complicated programs

Getting Started

#include <QtGui>

int main(int argc, char *argv[])
{

QApplication app(argc, argv);

QLabel hello("Hello World!");

hello.resize(250, 150);
hello.setWindowTitle("Simple example");
hello.show();

return app.exec();
}

Building Qt Applications

I Qt has its own preprocessor, the Meta Object Compiler (moc)
I qmake manages Qt projects and generates makefiles

automatically
I qmake -project will make a project file (ends in .pro) that

configures the makefile
I qmake makes a makefile

I So, to build a Qt project: qmake -project; qmake; make

Qt Overview

I There is one, and only one, QApplication
I qApp is a global pointer to the QApplication

I Everything clickable is called a ‘widget’
I Widgets can hold other widgets
I A widget with no parent becomes a window

Qt Overview

I There is one, and only one, QApplication
I qApp is a global pointer to the QApplication
I Everything clickable is called a ‘widget’
I Widgets can hold other widgets
I A widget with no parent becomes a window

A Simple Notepad

#include<QApplication>
#include<QTextEdit>

int main(int argc, char** argv)
{

QApplication app(argc,argv);

QTextEdit te;
te.setWindowTitle("Not Vim");
te.show();

return app.exec();
}

Composite Objects

I Widgets can be added to another widget with the
addWidget() function

I You can use a Layout to specify how the widgets are organized

I Memory Management: addWidget() takes a pointer and is
responsible for cleaning up all its children

Composite Objects

I Widgets can be added to another widget with the
addWidget() function

I You can use a Layout to specify how the widgets are organized
I Memory Management: addWidget() takes a pointer and is

responsible for cleaning up all its children

Layout Example
#include<QtGui>

int main(int argc, char** argv)
{

QApplication app(argc,argv);

QTextEdit* te = new QTextEdit;
QPushButton* quit = new QPushButton("&Quit");

QVBoxLayout* layout = new QVBoxLayout;
layout->addWidget(quit);
layout->addWidget(te);

QWidget window;
window.setLayout(layout);

window.show();

return app.exec();
}

Making Buttons Do Things

I Qt is event-driven: QApplication monitors what the user does
and sends events to widgets when something happens

I Signal: An event a widget causes: button click, key press, etc.
I Slot: An action a widget takes when a signal is sent
I connect(source-object, SIGNAL(signal_name()),

destination-object, SLOT(slot_name())) connects
signals to slots

Actually Quitting
#include<QtGui>
int main(int argc, char** argv)
{

QApplication app(argc,argv);

QTextEdit* te = new QTextEdit;
QPushButton* quit = new QPushButton("&Quit");

QObject::connect(quit, SIGNAL(clicked()),
qApp, SLOT(quit()));

QVBoxLayout* layout = new QVBoxLayout;
layout->addWidget(quit);
layout->addWidget(te);

QWidget window;
window.setLayout(layout);

window.show();

return app.exec();
}

Writing your own slot

I In order to make your own slots, you need to make a custom
QWidget class

I In addition to public and private functions and members,
QObjects have public and private slots

I A slot is just a function that gets called whenever a signal
connected to it is sent

Example: ask-quit

Menus and Toolbars

I QMainWindow is a class for making standard applications with
menus and toolbars

I setCentralWidget() sets the widget that fills the window

I menuBar() returns a pointer to the menubar, which you can
use to add new menus

I addToolbar() creates a new toolbar

I To avoid repeating a lot of code, you can add a QAction to
both a menu and a toolbar

I Then you can connect that one action to various slots

Example: menus

Menus and Toolbars

I QMainWindow is a class for making standard applications with
menus and toolbars

I setCentralWidget() sets the widget that fills the window

I menuBar() returns a pointer to the menubar, which you can
use to add new menus

I addToolbar() creates a new toolbar
I To avoid repeating a lot of code, you can add a QAction to

both a menu and a toolbar
I Then you can connect that one action to various slots

Example: menus

Getting Fancy with Signals

I You can declare your own signals in the signals: section

I For example, QPushButton has void clicked(); in its
signals

I To send a signal, use emit signal-name()
I You don’t actually implement signals, just declare, emit, and

connect them
I You can send data over signals by adding parameters to your

signals!
I Connect that signal to a slot that takes the same arguments
I The slot will be called with the data you use when you emit

the signal

Example: title

Getting Fancy with Signals

I You can declare your own signals in the signals: section

I For example, QPushButton has void clicked(); in its
signals

I To send a signal, use emit signal-name()

I You don’t actually implement signals, just declare, emit, and
connect them

I You can send data over signals by adding parameters to your
signals!

I Connect that signal to a slot that takes the same arguments
I The slot will be called with the data you use when you emit

the signal

Example: title

Getting Fancy with Signals

I You can declare your own signals in the signals: section

I For example, QPushButton has void clicked(); in its
signals

I To send a signal, use emit signal-name()
I You don’t actually implement signals, just declare, emit, and

connect them

I You can send data over signals by adding parameters to your
signals!

I Connect that signal to a slot that takes the same arguments
I The slot will be called with the data you use when you emit

the signal

Example: title

Getting Fancy with Signals

I You can declare your own signals in the signals: section

I For example, QPushButton has void clicked(); in its
signals

I To send a signal, use emit signal-name()
I You don’t actually implement signals, just declare, emit, and

connect them
I You can send data over signals by adding parameters to your

signals!
I Connect that signal to a slot that takes the same arguments
I The slot will be called with the data you use when you emit

the signal

Example: title

