
Profiling

Profiling measures the performance of a program and can be used
to find CPU or memory bottlenecks.

I time A stopwatch
I gprof The GNU (CPU) Profiler

I callgrind Valgrind’s CPU profiling tool

I massif Valgrind’s memory profiling tool



Timing programs with time

I Just run time your_program !

I Reading time ’s output:
I Real: The wall-clock or total time the program took to run.
I User: The time the program (and libraries) spent executing

CPU instructions.
I System: The time the program spent waiting on system calls

(usually I/O).



Profiling with gprof

I You must compile with g++ -pg program.cpp -o program .
I Then, run your program like normal. It will create a file named

gmon.out .

I Finally, gprof program gmon.out will display profiling
statistics!



Understanding gprof Output

I Flat profile: Overview of function usage.
I Time measures are based on sampling 100 times/second.
I Function call counts are exact.

I Call graph: A listing of which functions called each other.
I The line with the index entry is the function under

consideration.
I Lines above that are functions that called this function.
I Lines below that are functions that this function called.



Understanding gprof Output

I Flat profile: Overview of function usage.
I Time measures are based on sampling 100 times/second.
I Function call counts are exact.
I Call graph: A listing of which functions called each other.
I The line with the index entry is the function under

consideration.
I Lines above that are functions that called this function.
I Lines below that are functions that this function called.



Profiling with callgrind

I As with Memcheck, compile with
g++ -g program.cpp -o program

I Run valgrind --tool=callgrind ./program . It will
create a file named callgrind.out.NNNN .

I callgrind_annotate --auto=yes callgrind.out.NNNN
will print some statistics on your program.

I You can also view the output file directly, although the results
are not easy to read.



Understanding callgrind Output

I Callgrind counts instructions executed, not time spent.
I The annotated source shows the number of instruction

executions a specific line caused.
I Function calls are annotated on the right with the number of

times they are called.



Recursion and callgrind

I Recursion can confuse both gprof and callgrind .

I The --separate-recs=N option to Valgrind separates
function calls up to N deep.

I The --separate-callers=N option to Valgrind separates
functions depending on which function called them.

I In general, when you have recursion, the call graph and call
counts may be wrong, but the instruction count will be correct.



Profiling with massif

I Compile with g++ -g program.cpp -o program
I Run

valgrind --tool=massif --time-unit=B ./program . It
will create a file named massif.out.NNNN .

I To get information on stack memory usage as well, include
--stacks=yes after --time-unit=B .

I ms_print massif.out.NNNN will print statistics for you.



Understanding massif Output
I Snapshots: massif takes a snapshot of the heap on every

allocation and deallocation.
I Most snapshots are plain. They record only how much heap

was allocated.
I Every 10th snapshot is detailed. These record where memory

was allocated in the program.
I A detailed snapshot is also taken at peak memory usage.

I The graph: Memory allocated vs. time. Time can be measured
in milliseconds, instructions, or bytes allocated.

I Colons (:) indicate plain snapshots, ‘at’ signs (@) indicate
detailed snapshots, and pounds (#) indicate the peak
snapshot.

I The chart shows the snapshot number, time, total memory
allocated, currently-allocated memory, and extra allocated
memory.

I The chart also shows the allocation tree from each detailed
snapshot.



Understanding massif Output
I Snapshots: massif takes a snapshot of the heap on every

allocation and deallocation.
I Most snapshots are plain. They record only how much heap

was allocated.
I Every 10th snapshot is detailed. These record where memory

was allocated in the program.
I A detailed snapshot is also taken at peak memory usage.

I The graph: Memory allocated vs. time. Time can be measured
in milliseconds, instructions, or bytes allocated.

I Colons (:) indicate plain snapshots, ‘at’ signs (@) indicate
detailed snapshots, and pounds (#) indicate the peak
snapshot.

I The chart shows the snapshot number, time, total memory
allocated, currently-allocated memory, and extra allocated
memory.

I The chart also shows the allocation tree from each detailed
snapshot.



Understanding massif Output
I Snapshots: massif takes a snapshot of the heap on every

allocation and deallocation.
I Most snapshots are plain. They record only how much heap

was allocated.
I Every 10th snapshot is detailed. These record where memory

was allocated in the program.
I A detailed snapshot is also taken at peak memory usage.

I The graph: Memory allocated vs. time. Time can be measured
in milliseconds, instructions, or bytes allocated.

I Colons (:) indicate plain snapshots, ‘at’ signs (@) indicate
detailed snapshots, and pounds (#) indicate the peak
snapshot.

I The chart shows the snapshot number, time, total memory
allocated, currently-allocated memory, and extra allocated
memory.

I The chart also shows the allocation tree from each detailed
snapshot.


