
What is make ?

I make is a program that can be used to create files (such as
executables).

I It can detect what has changed between builds and only
rebuild what is necessary.

I Makefiles are very common in large C and C++ projects.
I They can also be used to store project-related commands.

Your First Makefile: makefile-1

program:
g++ *.cpp -o program

Dependencies: makefile-2

program: main.cpp funcs.h funcs.cpp
g++ *.cpp -o program

Multiple Targets: makefile-3

program: main.o funcs.o
g++ main.o funcs.o -o program

main.o: main.cpp funcs.h
g++ -c main.cpp

funcs.o: funcs.cpp funcs.h
g++ -c funcs.cpp

Phony Targets: makefile-4

.PHONY: clean

program: main.o funcs.o
g++ main.o funcs.o -o program

%< --- SNIP --- >%

- means "ignore errors from"
@ means "don’t print command"
clean:

-@rm -f program
-@rm -f *.o

Variables

I var=value sets values.
I ${var} uses the value of the variable.

I var=$(wildcard *.cpp) puts the name of every file ending
in .cpp in var .

I foo=$(var:%.cpp=%.o) substitutes .o for .cpp in all the
files in var .

I target: var=thing assigns thing to var when building
target and its dependencies.

Variables

I var=value sets values.
I ${var} uses the value of the variable.

I var=$(wildcard *.cpp) puts the name of every file ending
in .cpp in var .

I foo=$(var:%.cpp=%.o) substitutes .o for .cpp in all the
files in var .

I target: var=thing assigns thing to var when building
target and its dependencies.

Variables

I var=value sets values.
I ${var} uses the value of the variable.

I var=$(wildcard *.cpp) puts the name of every file ending
in .cpp in var .

I foo=$(var:%.cpp=%.o) substitutes .o for .cpp in all the
files in var .

I target: var=thing assigns thing to var when building
target and its dependencies.

Variables: makefile-5

CFLAGS = -Wall --pedantic-errors -O2

program: main.o funcs.o
g++ ${CFLAGS} main.o funcs.o -o program

.PHONY:debug
debug: CFLAGS = -g -Wall --pedantic-errors
debug: program

main.o: main.cpp funcs.h
g++ ${CFLAGS} -c main.cpp

funcs.o: funcs.cpp funcs.h
g++ ${CFLAGS} -c funcs.cpp

Patterns

I You can make pattern targets that describe how to build more
than one file.

I As with substitution, you use % for the variable part of the
target name.

I For example: %.o: %.cpp describes how to build any .o
file from its matching .cpp file.

I $@ holds the name of the target.

I $< holds the name of the first dependency.

I $ˆ holds the names of all the dependencies.
I

Patterns

I You can make pattern targets that describe how to build more
than one file.

I As with substitution, you use % for the variable part of the
target name.

I For example: %.o: %.cpp describes how to build any .o
file from its matching .cpp file.

I $@ holds the name of the target.

I $< holds the name of the first dependency.

I $ˆ holds the names of all the dependencies.
I Automatic Variables

https://www.gnu.org/software/make/manual/html_node/Automatic-Variables.html

Patterns: makefile-6
SOURCES = $(wildcard *.cpp)
HEADERS = $(wildcard *.h)
OBJECTS = $(SOURCES:%.cpp=%.o)

CPP = g++
CFLAGS = -Wall --pedantic-errors -O2

program: ${OBJECTS}
${CPP} ${CFLAGS} ${OBJECTS} -o program

%.o: %.cpp ${HEADERS}
${CPP} ${CFLAGS} -c $<

.PHONY: clean
clean:

-@rm -f program
-@rm -f ${OBJECTS}

Miscellany

Command-Line Options:
I make -j3 runs up to 3 jobs in parallel

I make -B makes targets even if they seem up-to-date.

Related programs:

Miscellany

Command-Line Options:
I make -j3 runs up to 3 jobs in parallel

I make -B makes targets even if they seem up-to-date.
Related programs:

I makedepend is a command for auto-generating dependencies
in C and C++ projects.

I CMake can generate Makefiles and various IDE configurations
for projects.

http://linux.die.net/man/1/makedepend
https://cmake.org/

