
What is a shell?

I login is a program that logs users in to a computer.

I When it logs you in, login checks /etc/passwd for your
shell.

I After it authenticates you, it runs whatever your shell happens
to be.

I Shells give you a way to run programs and view their output.

I They also usually include some built-in commands.

I Shells use variables to track information about commands and
the system environment.

I The standard interactive shell is bash .

I There are others, though! zsh and fish are both popular.

What is a shell?

I login is a program that logs users in to a computer.

I When it logs you in, login checks /etc/passwd for your
shell.

I After it authenticates you, it runs whatever your shell happens
to be.

I Shells give you a way to run programs and view their output.

I They also usually include some built-in commands.

I Shells use variables to track information about commands and
the system environment.

I The standard interactive shell is bash .

I There are others, though! zsh and fish are both popular.

What is a shell?

I login is a program that logs users in to a computer.

I When it logs you in, login checks /etc/passwd for your
shell.

I After it authenticates you, it runs whatever your shell happens
to be.

I Shells give you a way to run programs and view their output.

I They also usually include some built-in commands.

I Shells use variables to track information about commands and
the system environment.

I The standard interactive shell is bash .

I There are others, though! zsh and fish are both popular.

Navigating the filesystem

I ls List files. You can give it a directory to list.
I -l Display the output in a detailed list, one line per file.
I -h Display file sizes in a human-readable format.
I -a Display all files, including hidden ones.

I pwd Print working directory.

I cd DIRECTORY Change directory.

I cd without a directory takes you $HOME .
I cd - takes you to the previous directory you were in.

Navigating the filesystem

I ls List files. You can give it a directory to list.
I -l Display the output in a detailed list, one line per file.
I -h Display file sizes in a human-readable format.
I -a Display all files, including hidden ones.

I pwd Print working directory.

I cd DIRECTORY Change directory.

I cd without a directory takes you $HOME .
I cd - takes you to the previous directory you were in.

Navigating the filesystem

I ls List files. You can give it a directory to list.
I -l Display the output in a detailed list, one line per file.
I -h Display file sizes in a human-readable format.
I -a Display all files, including hidden ones.

I pwd Print working directory.

I cd DIRECTORY Change directory.

I cd without a directory takes you $HOME .
I cd - takes you to the previous directory you were in.

Rearranging files

I mv SOURCE DESTINATION Move (or rename) files.
I -i Interactively ask you before overwriting files.
I -n Never overwrite files.

I cp SOURCE DESTINATION Copy files.

I -r Recursively copy directories, which is what you want to
do.

I rm FILE Remove one or more files.
I -f Forcibly remove nonexistent files.

I mkdir DIRECTORY Makes a directory.
I -p Makes every missing directory in the given path

Rearranging files

I mv SOURCE DESTINATION Move (or rename) files.
I -i Interactively ask you before overwriting files.
I -n Never overwrite files.

I cp SOURCE DESTINATION Copy files.

I -r Recursively copy directories, which is what you want to
do.

I rm FILE Remove one or more files.
I -f Forcibly remove nonexistent files.

I mkdir DIRECTORY Makes a directory.
I -p Makes every missing directory in the given path

Rearranging files

I mv SOURCE DESTINATION Move (or rename) files.
I -i Interactively ask you before overwriting files.
I -n Never overwrite files.

I cp SOURCE DESTINATION Copy files.

I -r Recursively copy directories, which is what you want to
do.

I rm FILE Remove one or more files.
I -f Forcibly remove nonexistent files.

I mkdir DIRECTORY Makes a directory.
I -p Makes every missing directory in the given path

Looking at files

I cat [FILE] Print out file contents.

I less [FILE] Paginate files or STDIN.

I head [FILE] Print lines from the top of a file or STDIN.

I tail [FILE] Print lines from the end of a file or STDIN.

I -n LINES Print LINES lines instead of 10.
I -f Print new lines as they are appended (tail only).

I sort [FILE] Sorts files or STDIN.
I -u Only prints one of each matching line (unique).
I Often paired with uniq for similar effect.

I diff FILE1 FILE2 Shows differences between files.
I a/d/c Added/Deleted/Changed.

Looking at files

I cat [FILE] Print out file contents.

I less [FILE] Paginate files or STDIN.

I head [FILE] Print lines from the top of a file or STDIN.

I tail [FILE] Print lines from the end of a file or STDIN.

I -n LINES Print LINES lines instead of 10.
I -f Print new lines as they are appended (tail only).

I sort [FILE] Sorts files or STDIN.
I -u Only prints one of each matching line (unique).
I Often paired with uniq for similar effect.

I diff FILE1 FILE2 Shows differences between files.
I a/d/c Added/Deleted/Changed.

Looking at files

I cat [FILE] Print out file contents.

I less [FILE] Paginate files or STDIN.

I head [FILE] Print lines from the top of a file or STDIN.

I tail [FILE] Print lines from the end of a file or STDIN.

I -n LINES Print LINES lines instead of 10.
I -f Print new lines as they are appended (tail only).

I sort [FILE] Sorts files or STDIN.
I -u Only prints one of each matching line (unique).
I Often paired with uniq for similar effect.

I diff FILE1 FILE2 Shows differences between files.
I a/d/c Added/Deleted/Changed.

Looking at files

I cat [FILE] Print out file contents.

I less [FILE] Paginate files or STDIN.

I head [FILE] Print lines from the top of a file or STDIN.

I tail [FILE] Print lines from the end of a file or STDIN.

I -n LINES Print LINES lines instead of 10.
I -f Print new lines as they are appended (tail only).

I sort [FILE] Sorts files or STDIN.
I -u Only prints one of each matching line (unique).
I Often paired with uniq for similar effect.

I diff FILE1 FILE2 Shows differences between files.
I a/d/c Added/Deleted/Changed.

Looking at files

I cat [FILE] Print out file contents.

I less [FILE] Paginate files or STDIN.

I head [FILE] Print lines from the top of a file or STDIN.

I tail [FILE] Print lines from the end of a file or STDIN.

I -n LINES Print LINES lines instead of 10.
I -f Print new lines as they are appended (tail only).

I sort [FILE] Sorts files or STDIN.
I -u Only prints one of each matching line (unique).
I Often paired with uniq for similar effect.

I diff FILE1 FILE2 Shows differences between files.
I a/d/c Added/Deleted/Changed.

Redirecting IO

I Each program has three default IO streams:
I STDIN: input, by default from the keyboard (cin).
I STDOUT: output, by default to the screen (cout).
I STDERR: output, by default to the screen (cerr).

I We can redirect IO to or from files or other programs.

I cmd1 | cmd2 Pipe STDOUT from cmd1 into STDIN for

cmd2 .

I cmd < input.txt Funnel data from input.txt to STDIN

for cmd .

I cmd > output.txt Funnel STDOUT from cmd into

output.txt .

Redirecting IO

I Each program has three default IO streams:
I STDIN: input, by default from the keyboard (cin).
I STDOUT: output, by default to the screen (cout).
I STDERR: output, by default to the screen (cerr).

I We can redirect IO to or from files or other programs.

I cmd1 | cmd2 Pipe STDOUT from cmd1 into STDIN for

cmd2 .

I cmd < input.txt Funnel data from input.txt to STDIN

for cmd .

I cmd > output.txt Funnel STDOUT from cmd into

output.txt .

Redirecting IO

I Each program has three default IO streams:
I STDIN: input, by default from the keyboard (cin).
I STDOUT: output, by default to the screen (cout).
I STDERR: output, by default to the screen (cerr).

I We can redirect IO to or from files or other programs.

I cmd1 | cmd2 Pipe STDOUT from cmd1 into STDIN for

cmd2 .

I cmd < input.txt Funnel data from input.txt to STDIN

for cmd .

I cmd > output.txt Funnel STDOUT from cmd into

output.txt .

STDERR redirection tricks

I bash uses 1 and 2 to refer to STDOUT and STDERR.

I cmd 2> err.txt Funnel STDERR from cmd into
err.txt .

I cmd 2>&1 Funnel STDERR from cmd into STDOUT.

I cmd &> all-output.txt Funnel all output from cmd into

all-output.txt

I Common usage: cmd &> /dev/null dumps all output to
the bit bucket.

STDERR redirection tricks

I bash uses 1 and 2 to refer to STDOUT and STDERR.

I cmd 2> err.txt Funnel STDERR from cmd into
err.txt .

I cmd 2>&1 Funnel STDERR from cmd into STDOUT.

I cmd &> all-output.txt Funnel all output from cmd into

all-output.txt

I Common usage: cmd &> /dev/null dumps all output to
the bit bucket.

STDERR redirection tricks

I bash uses 1 and 2 to refer to STDOUT and STDERR.

I cmd 2> err.txt Funnel STDERR from cmd into
err.txt .

I cmd 2>&1 Funnel STDERR from cmd into STDOUT.

I cmd &> all-output.txt Funnel all output from cmd into

all-output.txt

I Common usage: cmd &> /dev/null dumps all output to
the bit bucket.

Environment Variables

I Shells keep track of a lot of information in variables.

I set shows all the environment variables set in your shell.

I env shows exported environment variables (variables that
are also set in the environment of programs launched from
this shell).

I VAR="value" sets the value of $VAR . (No spaces around
the = !)

I echo $VAR prints the value of a variable in the shell.

Environment Variables

I Shells keep track of a lot of information in variables.

I set shows all the environment variables set in your shell.

I env shows exported environment variables (variables that
are also set in the environment of programs launched from
this shell).

I VAR="value" sets the value of $VAR . (No spaces around
the = !)

I echo $VAR prints the value of a variable in the shell.

Environment Variables

I Shells keep track of a lot of information in variables.

I set shows all the environment variables set in your shell.

I env shows exported environment variables (variables that
are also set in the environment of programs launched from
this shell).

I VAR="value" sets the value of $VAR . (No spaces around
the = !)

I echo $VAR prints the value of a variable in the shell.

I You can get environment variable values in C++ with
getenv()

http://www.cplusplus.com/reference/cstdlib/getenv/

Useful variables

I $PATH Colon-delimited list of directories to look for programs
in.

I $EDITOR Tells which editor you would prefer programs to
launch for you.

I $PS1 Customize your shell prompt!

I ~/.bashrc runs every time you start bash , so you can
export customizations there.

Useful variables

I $PATH Colon-delimited list of directories to look for programs
in.

I $EDITOR Tells which editor you would prefer programs to
launch for you.

I $PS1 Customize your shell prompt!

I ~/.bashrc runs every time you start bash , so you can
export customizations there.

Useful variables

I $PATH Colon-delimited list of directories to look for programs
in.

I $EDITOR Tells which editor you would prefer programs to
launch for you.

I $PS1 Customize your shell prompt!

I ~/.bashrc runs every time you start bash , so you can
export customizations there.

Useful variables

I $PATH Colon-delimited list of directories to look for programs
in.

I $EDITOR Tells which editor you would prefer programs to
launch for you.

I $PS1 Customize your shell prompt!

I ~/.bashrc runs every time you start bash , so you can
export customizations there.

Neat bash tricks

I Tab completion works for files and commands!

I History:
I / scroll through history.
I Ctrl + r searches backwards through history.

I !! holds the last command executed.

I !$ holds the last argument to the last command.

I alias sl=ls runs ls when you type sl .

Neat bash tricks

I Tab completion works for files and commands!
I History:

I / scroll through history.
I Ctrl + r searches backwards through history.

I !! holds the last command executed.

I !$ holds the last argument to the last command.

I alias sl=ls runs ls when you type sl .

Neat bash tricks

I Tab completion works for files and commands!
I History:

I / scroll through history.
I Ctrl + r searches backwards through history.

I !! holds the last command executed.

I !$ holds the last argument to the last command.

I alias sl=ls runs ls when you type sl .

Neat bash tricks

I Tab completion works for files and commands!
I History:

I / scroll through history.
I Ctrl + r searches backwards through history.

I !! holds the last command executed.

I !$ holds the last argument to the last command.

I alias sl=ls runs ls when you type sl .

Processes

I ps Process list.

I aux / -ef show lots of information about all processes.
I ps has crazy whack options.

I top and htop give an interactive process listing.

I Job Control:
I You can start processes in the background by doing

command & .
I If you have a command running in the foreground, you can

stop it with Ctrl + z .
I fg starts the last process in the foreground.

I bg starts the last process in the background.

I jobs shows your running jobs.

I fg %2 starts job 2 in the foreground.

I kill PID Kills a process. (You can do kill %1 !)
I killall command Kills every process running command .

Processes

I ps Process list.

I aux / -ef show lots of information about all processes.
I ps has crazy whack options.

I top and htop give an interactive process listing.

I Job Control:
I You can start processes in the background by doing

command & .
I If you have a command running in the foreground, you can

stop it with Ctrl + z .
I fg starts the last process in the foreground.

I bg starts the last process in the background.

I jobs shows your running jobs.

I fg %2 starts job 2 in the foreground.

I kill PID Kills a process. (You can do kill %1 !)
I killall command Kills every process running command .

Processes

I ps Process list.

I aux / -ef show lots of information about all processes.
I ps has crazy whack options.

I top and htop give an interactive process listing.

I Job Control:
I You can start processes in the background by doing

command & .
I If you have a command running in the foreground, you can

stop it with Ctrl + z .

I fg starts the last process in the foreground.

I bg starts the last process in the background.

I jobs shows your running jobs.

I fg %2 starts job 2 in the foreground.

I kill PID Kills a process. (You can do kill %1 !)
I killall command Kills every process running command .

Processes

I ps Process list.

I aux / -ef show lots of information about all processes.
I ps has crazy whack options.

I top and htop give an interactive process listing.

I Job Control:
I You can start processes in the background by doing

command & .
I If you have a command running in the foreground, you can

stop it with Ctrl + z .
I fg starts the last process in the foreground.

I bg starts the last process in the background.

I jobs shows your running jobs.

I fg %2 starts job 2 in the foreground.

I kill PID Kills a process. (You can do kill %1 !)
I killall command Kills every process running command .

Processes

I ps Process list.

I aux / -ef show lots of information about all processes.
I ps has crazy whack options.

I top and htop give an interactive process listing.

I Job Control:
I You can start processes in the background by doing

command & .
I If you have a command running in the foreground, you can

stop it with Ctrl + z .
I fg starts the last process in the foreground.

I bg starts the last process in the background.

I jobs shows your running jobs.

I fg %2 starts job 2 in the foreground.

I kill PID Kills a process. (You can do kill %1 !)
I killall command Kills every process running command .

Processes

I ps Process list.

I aux / -ef show lots of information about all processes.
I ps has crazy whack options.

I top and htop give an interactive process listing.

I Job Control:
I You can start processes in the background by doing

command & .
I If you have a command running in the foreground, you can

stop it with Ctrl + z .
I fg starts the last process in the foreground.

I bg starts the last process in the background.

I jobs shows your running jobs.

I fg %2 starts job 2 in the foreground.

I kill PID Kills a process. (You can do kill %1 !)
I killall command Kills every process running command .

Last but not least: The Manual!

I man COMMAND opens a manual listing for that command.

I q quits the manual.

I j / k scroll up and down a line.

I Space scrolls down one page.

I /thing searches for things.

I n / N go to next/previous search result.

I man man gives you the manual for the manual!

Last but not least: The Manual!

I man COMMAND opens a manual listing for that command.

I q quits the manual.

I j / k scroll up and down a line.

I Space scrolls down one page.

I /thing searches for things.

I n / N go to next/previous search result.

I man man gives you the manual for the manual!

Last but not least: The Manual!

I man COMMAND opens a manual listing for that command.

I q quits the manual.

I j / k scroll up and down a line.

I Space scrolls down one page.

I /thing searches for things.

I n / N go to next/previous search result.

I man man gives you the manual for the manual!

Last but not least: The Manual!

I man COMMAND opens a manual listing for that command.

I q quits the manual.

I j / k scroll up and down a line.

I Space scrolls down one page.

I /thing searches for things.

I n / N go to next/previous search result.

I man man gives you the manual for the manual!

Last but not least: The Manual!

I man COMMAND opens a manual listing for that command.

I q quits the manual.

I j / k scroll up and down a line.

I Space scrolls down one page.

I /thing searches for things.

I n / N go to next/previous search result.

I man man gives you the manual for the manual!

