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Introduction

This lab will give you experience using both CPU and memory profilers. Please
make an answers file and commit it to the repository along with your code fixes.

Problem 1: Massif

Remember ye olde filter.cpp? It’s back again!

• Build prob1.cpp and run it through massif

( valgrind --tool=massif --time-unit=B ./prob1 < story.txt ). How

much memory does the program allocate in total (cumulative)? What is
the maximum amount of memory allocated at one time?

• Open up prob1.cpp . Do you really need to store every line of the input if

you’re just printing it out? Fix the code so that you only keep the current
line of input.

• Run the fixed code through massif again. Now, what is the total cumula-
tive memory allocation and peak memory allocation?

Problem 2: gprof

This problem’s code appends one random number between 1 and 1000 to a
vector and prints the average of the vector. Hopefully, the average will converge
to around 500.

• Build prob2.cpp for gprof and run it, then look at gprof’s output. What

functions are called frequently? (It may help to call gprof -A , which

annotates the source with function call counts.)

• Look at the average function. Why is the vector’s copy constructor being
called? Fix the code to not make an unnecessary copy.

• Run the code through gprof again. Did your fix work?
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Problem 3: callgrind

This problem’s code calculates the length of input lines and prints a running
average.

• Build prob3.cpp and run it through callgrind (it needs input as with

Prob 1.1). Run callgrind annotate --auto=yes callgrind.out.NNNN .

What lines in main() consume a lot of instructions? How many instruc-
tions are spent calculating the average? (lines 17-27)

• Look at the source code. Do we really need to re-count the length of each
line each time we calculate the average? (Hint: no.) Fix the code to
maintain a running total of characters and a line count. (This is not a
one-line change; please throw away a lot of this slow implementation.)

• Re-build and run the code through callgrind. How many instructions are
spent calculating the average now?
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